
1

Machine learning approach to 
estimating the mass composition of 

cosmic rays

dr. Gašper Kukec Mezek

Mentor: prof. dr. Andrej Filipčič

ASTRO@TS 2019 (June 24th 2019)



2

Cosmic rays and mass composition
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• Cosmic rays (CR): Charged particles arriving to Earth from extraterrestrial sources

• Ultra-high energy cosmic rays (UHECR): CR with energies above ~1018 𝑒𝑉

• Extensive air shower (EAS):
Cascade of secondary particles
after interaction of UHECR with
atmospheric nuclei

• Mass composition studies:

• Type of initial particle dictates the
evolution of the extensive air shower

• Motivation: Interaction cross-section at
extreme energies, uncover sources and
acceleration processes of UHECR

• Main drawback: Cross-section at the
highest energies extrapolated from LHC measurements
(max 𝐸𝐿𝐻𝐶~10

17 𝑒𝑉 in the laboratory reference frame)
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Detection of UHECR
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• Various detection systems:

• Water Cherenkov stations: filled with water,
photomultipliers detect produced Cherenkov light

• Scintillation detectors: production of
luminescence in a material excited by ionizing
radiation

• Fluorescence telescopes: observing deexcitation
from nitrogen molecules in the UV wavelength
range

www.flickr.com/photos/134252569@N07

wanda.fiu.edu/teaching/courses/Modern_lab_manual/scintillator.html
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Machine learning and multivariate analysis
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• Machine learning: Using computer algorithms, which learn from data without 
being explicitly programmed

• Multivariate analysis (MVA): Combining multiple input features (variables) in order 
to improve separation strength between different classes

• Complementary detection system for UHECR →mass composition can be 
estimated by combining EAS properties

Statistical approach Event-by-event approach

Description

• Split the data set into subsets using the same 
constraints as for simulations

• Perform distribution fitting or parameterization to 
extract mass composition information

• Use simulations in an MVA analysis to classify 
between different particle types

• Apply classification cuts to individual events for an 
event-by-event classification

Strengths
• Simple to implement
• Only one step in the MVA analysis
• Works even when separation strength is weaker

• True determination of particle type for each event 
separately

Weaknesses
• Only gives elemental fraction values for included 

particle types (generalization)

• Difficult to implement
• Many steps in the MVA analysis (for multiple classes)
• Requires good separation strength for all classes



• Much easier to implement than event-by-event identification

• Can extract elemental fractions through distribution fitting (maximum likelihood)

• Direct comparison to results (ex. Pierre Auger Observatory [PoS(ICRC2017), PRD 90 
(2014) 122006])
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Why statistical approach?
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• The simulations need to be split into:

• MVA training set: Training the MVA method,
performing distribution fitting

• Cross-validation set: Estimate stability of
method on events not used during training

• Analysis follows these steps:

1. Perform treatment of simulations and data

2. Select input features (variables) and the
MVA method

3. Train and test the MVA method (determines
separation strength)

4. Apply MVA method on all data sets to get the
output MVA variable distribution

5. Perform MVA variable distribution fitting
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Multivariate analysis steps
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• MVA methods determine the separation strength
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Multivariate analysis methods
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MVA method
No or linear
correlations

Non-linear
correlations

Training
speed

Boosted decision trees (BDT) Fair Good Fast

Multi-layer perceptrons (ANN) Good Good Slow

Fisher linear discriminants Good Bad Fast

Great for an event-by-
event approach!

Yes/no decisions, until 
no new information is 

gained
Boosting improves 

performance



• MVA methods determine the separation strength
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Multivariate analysis methods
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MVA method
No or linear
correlations

Non-linear
correlations

Training
speed

Boosted decision trees (BDT) Fair Good Fast

Multi-layer perceptrons (ANN) Good Good Slow

Fisher linear discriminants Good Bad Fast

Pettern recognition and machine learning, Springer, 2016

Great for an event-by-
event approach!

Weights adjusted 
depending on expected 

output

Input mapped to output 
through neuron 

activation functions



• MVA methods determine the separation strength
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Multivariate analysis methods
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MVA method
No or linear
correlations

Non-linear
correlations

Training
speed

Boosted decision trees (BDT) Fair Good Fast

Multi-layer perceptrons (ANN) Good Good Slow

Fisher linear discriminants Good Bad Fast

www.researchgate.net/figure/Schematic-diagram-of-the-radial-basis-function-neural-network-for-one-output-45_fig1_258196355

Projection onto a 
hypersurface

Great for a statistical 
approach!
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Analysis of simulation samples
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100% proton
100% helium

100% oxygen 100% iron

• Determine analysis method stability from the cross-validation simulation sample

EPOS-LHC,
Fisher



Mock data set

• Mock data set (colors) imitates the published Pierre Auger Observatory mass
composition (grey) [PoS(ICRC2017), PRD 90 (2014) 122006]

• Determines the performance on a mixed composition data set

• The same approach can then be applied to data (not the scope of this talk)
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Thank you for your attention!
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Backup slides
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Introduction
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• Cosmic rays (CR): Charged particles arriving to Earth from extraterrestrial sources

• Ultra-high energy cosmic rays (UHECR): CR with energies above ~1018 𝑒𝑉

• Energy spectrum features:

• Knees – Exhaustion of galactic
sources of CR

• Ankle – Domination of extragalactic
sources or GZK effect

• GZK effect – Abrupt drop at the
highest energies, scattering of
protons and neutrons on cosmic
microwave background (CMB)
photons

Pierre Auger Observatory

LHC@13 TeV𝑝 + 𝛾𝐶𝑀𝐵⟶ 𝑛+ 𝜋
+

𝑛 + 𝛾𝐶𝑀𝐵⟶ 𝑝+ 𝜋
−

[Chin. Phys. C40 (2016) 100001]



Extensive air showers

• Extensive air shower (EAS):
Cascade of secondary particles
after interaction of UHECR and
atmospheric nuclei

• Main EAS parts:

• Electromagnetic part (electrons,
positrons, photons)

• Hadronic part (hadrons and mesons)

• Weakly interacting shower remnants
(muons and neutrinos)

• Primary particle determines the
evolution of the EAS:

• EAS develops higher in the atmosphere for heavier particles (larger interaction cross section)

• EAS develops lower in the atmosphere for lighter and weakly interacting particles
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adapted from www.lip,pt/~jespada/Research/develop.jpg



• Mass composition studies: Determine mass and charge of UHECR

• Motivations for performing mass composition studies:
• Discrimination between hadronic interaction

models

• Backtracking of light UHECR with energies
> 1019𝑒𝑉 to their sources

• Acceleration processes that produce UHECR

• Cosmic magnetic field strength

• Identifying energy spectrum features

• Main drawback: Mass composition highly
dependent on hadronic interaction
models (extrapolated cross-sections)
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Mass composition of UHECR
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∆𝛼 =
𝑍𝑒𝑐

𝐸
 

0

𝐿

𝐵(𝑥) sin 𝜑 𝑥 𝑑𝑥

steemit.com/science/@shehzad/understanding-cosmic-rays-in-a-simple-way



• Results of SD-only Delta method
[PRD 96 (2017) 122003]

• Our conversion of risetime 𝑡1/2
to ∆𝑅 is based on this work

• Average mass estimator:

• Results from the Delta method
is then calibrated with 𝑋𝑚𝑎𝑥
analysis results

• Discrepancy explained as the
inability of hadronic interaction
models to predict muonic content
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Existing mass composition results
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[PRD 96 (2017) 122003]

ln 𝐴 = ln 56 ∙
∆𝑠 𝑝 − ∆𝑠 𝑑𝑎𝑡𝑎
∆𝑠 𝑝 − ∆𝑠 𝐹𝑒



• Simulations from the Napoli shower library:
• Three hadronic interaction models (EPOS-LHC,

QGSJET-II.04 and Sibyll-2.3)

• Four primary particle masses (proton, helium,
oxygen and iron)

• Energies between 1018.5𝑒𝑉 and 1020.0𝑒𝑉

• Data from the Pierre Auger Observatory:
• Hybrid events with SD and FD measurements

• Covering measurements between 1.12.2004
and 31.12.2015

• Energies between 1018.5𝑒𝑉 and 1020.0𝑒𝑉

• Both sets taken through selection cuts,
taking only high quality hybrid events

Simulations and data
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• Simulations are split into three sets for the
MVA analysis:

• MVA training set: Training the MVA method,
determining elemental fractions after the MVA
analysis

• Cross-validation set: Estimating the stability of the
analysis method with simulation events, that were
not used during MVA method training

• AugerMix set: A controlled mock data set that aims
to imitate previously published mass composition
results [PoS(ICRC2017), PRD 90 (2014) 122006]

• Size of the cross-validation set is  1 3 of the MVA
training set

• AugerMix mock data set has the same number of events as Pierre Auger
Observatory data

Simulations and data
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Energy [log(𝑬/𝒆𝑽)]
Number of data events

FD-only SD+FD

18.5 – 18.6 1108 824

18.6 – 18.7 840 627

18.7 – 18.8 583 463

18.8 – 18.9 471 370

18.9 – 19.0 359 259

19.0 – 19.1 281 214

19.1 – 19.2 193 139

19.2 – 19.3 134 106

19.3 – 19.4 110 80

19.4 – 19.5 66 45

19.5 – 20.0 62 45

Limited to
θ = [𝟎°, 𝟔𝟎°]

Unlimited
zenith angle



• Taking mass composition sensitive
observables:

• Depth of shower maximum (𝑿𝒎𝒂𝒙)

• SD signal at 1000 𝑚 from the
shower axis (𝑆1000)

• Risetime at 1000 𝑚 from the
shower axis (𝑡1000)

• 𝑆1000 and 𝑡1000 depend on
zenith angle 𝜃 – convert to
relative observables ∆𝑆38 and ∆𝑅
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Analysis observables
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Depth of shower 
maximum

Depth at which the EAS reaches the
maximum number of secondary particles

Heavy < Light

www-zeuthen.desy.de/~jknapp/fs/proton-showers.html



• Taking mass composition sensitive
observables:

• Depth of shower maximum (𝑋𝑚𝑎𝑥)

• SD signal at 𝟏𝟎𝟎𝟎𝒎 from the
shower axis (𝑺𝟏𝟎𝟎𝟎)

• Risetime at 1000 𝑚 from the
shower axis (𝑡1000)

• 𝑆1000 and 𝑡1000 depend on
zenith angle 𝜃 – convert to
relative observables ∆𝑆38 and ∆𝑅
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Analysis observables
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Signal at 𝟏𝟎𝟎𝟎𝒎
from shower axis

Distribution of SD station signals around the
shower axis

Heavy > Light



• Taking mass composition sensitive
observables:

• Depth of shower maximum (𝑋𝑚𝑎𝑥)

• SD signal at 1000 𝑚 from the
shower axis (𝑆1000)

• Risetime at 𝟏𝟎𝟎𝟎𝒎 from the
shower axis (𝒕𝟏𝟎𝟎𝟎)

• 𝑆1000 and 𝑡1000 depend on
zenith angle 𝜃 – convert to
relative observables ∆𝑆38 and ∆𝑅
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Analysis observables
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10% 50%

𝑓 𝑟 = 40 𝑛𝑠 + 𝑎𝑟 + 𝑏𝑟2

Muon versus electromagnetic content in SD 
station signals – shower age indicator

Heavy < Light

Risetime at 𝟏𝟎𝟎𝟎𝒎
from shower axis



• Removing zenith angle dependency
from 𝑆1000 to get 𝑆38

• 𝑆38 values determined for each of the
11 energy bins

• Relative observable from a power-law fit
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Analysis observables - ∆𝑺𝟑𝟖
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𝑆38 =
𝑆1000
𝑓𝐶𝐼𝐶(𝜃)

𝑥 = cos2𝜃 − cos2(38°)

𝑓𝑠𝑐𝑎𝑙𝑒 𝜃 = 𝑆 ∙ 𝑓𝐶𝐼𝐶(𝜃) = 𝑆 ∙ 1 + 𝑎𝑥 + 𝑏𝑥
2 + 𝑐𝑥3

𝑨 = (𝟐. 𝟎𝟗 ± 𝟎. 𝟎𝟐) × 𝟏𝟎𝟏𝟕eV
𝑩 = 𝟏. 𝟎𝟎𝟎 ± 𝟎. 𝟎𝟎𝟑

log(𝑬/𝒆𝑽) = [𝟏𝟖.𝟔, 𝟏𝟖. 𝟕]

∆𝑆38= 𝑆38 −
𝐸𝐹𝐷
𝐴

1/𝐵



• Removing zenith angle dependency
from 𝑆1000 to get 𝑆38

• 𝑆38 values determined for each of the
11 energy bins

• Relative observable from a power-law fit
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Analysis observables - ∆𝑺𝟑𝟖
M

u
lt

iv
a
r
ia

te
a
n

a
ly

s
is

A
n

a
ly

s
is

 o
b

s
e
r
v
a
b

le
s

-
∆
𝑺
𝟑
𝟖

𝑆38 =
𝑆1000
𝑓𝐶𝐼𝐶(𝜃)

𝑥 = cos2𝜃 − cos2(38°)

𝑓𝑠𝑐𝑎𝑙𝑒 𝜃 = 𝑆 ∙ 𝑓𝐶𝐼𝐶(𝜃) = 𝑆 ∙ 1 + 𝑎𝑥 + 𝑏𝑥
2 + 𝑐𝑥3

log(𝑬/𝒆𝑽) = [𝟏𝟖.𝟔, 𝟏𝟖. 𝟕]

∆𝑆38= 𝑆38 −
𝐸𝐹𝐷
𝐴

1/𝐵



• Removing distance from shower axis
dependency by fitting benchmark
functions

• Benchmark functions determined for
10 zenith angle bins and a reference
energy bin – removing zenith angle
dependence

• Combine station relative risetimes ∆𝑖 into
a relative risetime observable ∆𝑅
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Analysis observables - ∆𝑹
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log(𝑬/𝒆𝑽) = 𝟏𝟖.𝟗, 𝟏𝟗. 𝟏
sec𝜽 = [𝟏. 𝟐, 𝟏. 𝟑]

𝑡1/2
𝑏𝑒𝑛𝑐ℎ,𝐻𝐺𝑠𝑎𝑡 = 40 𝑛𝑠 + 𝐴2 + 𝐵2𝑟2 − 𝐴

𝑡1/2
𝑏𝑒𝑛𝑐ℎ = 40 𝑛𝑠 + 𝑀 𝐴2 + 𝐵2𝑟2 − 𝐴

∆𝑖= 𝑡1/2 − 𝑡1/2
𝑏𝑒𝑛𝑐ℎ

∆𝑅=
1

𝑁
 

𝑖=1

𝑁

∆𝑖



• Zenith angle (sec 𝜃) distributions of simulations and data

Simulations and data
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Peak at sec 𝜃 ~𝟏. 𝟐𝟐
(𝜽~𝟑𝟓°)



• SD station signal:

• 𝑆1000

• ∆𝑆38

• Comparison between Pierre
Auger data and AugerMix
mock data set

• Larger 𝑆1000 corresponds to
heavier mass composition
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Analysis observables
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EPOS-LHC
log(𝑬/𝒆𝑽) = [𝟏𝟖.𝟖, 𝟏𝟖. 𝟗]



• SD risetime:

• 𝑡1000

• ∆𝑅

• Comparison between Pierre
Auger data and AugerMix
mock data set

• Shorter 𝑡1000 corresponds to
heavier mass composition
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Analysis observables
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EPOS-LHC
log(𝑬/𝒆𝑽) = [𝟏𝟖.𝟖, 𝟏𝟖. 𝟗]



• For determining elemental fractions
perform distribution fitting:

• Combine simulation MVA distributions
of individual elements into 𝐻𝑠𝑖𝑚

• Fit 𝐻𝑠𝑖𝑚 to 𝐻𝑑𝑎𝑡𝑎 with a maximum
likelihood fitting approach (finite
distributions with Poissonian statistics)

• Fitting parameters 𝑓𝑖 are limited
between 0 and 1

• Standardized residuals give comparison
between simulations and data
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Distribution fitting procedure
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• For determining elemental fractions
perform distribution fitting:

• Combine simulation MVA distributions
of individual elements into 𝐻𝑠𝑖𝑚

• Fit 𝐻𝑠𝑖𝑚 to 𝐻𝑑𝑎𝑡𝑎 with a maximum
likelihood fitting approach (finite
distributions with Poissonian statistics)

• Fitting parameters 𝑓𝑖 are limited
between 0 and 1

• Standardized residuals give comparison
between simulations and data
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Distribution fitting procedure
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