

HERMES mission: probing GRBs with small satellites

Giuseppe Dilillo

Università di Udine

- 1. Gamma Ray Bursts and multi-messenger astronomy
- 2. HERMES mission profile and payload
- 3. Wrap-up

1. Introducing Gamma-Ray Bursts

Mermes

What is a Gamma-Ray Burst?

Most powerful sources of the γ -sky: $F \leq 10^{-3} \ erg \ s^{-1} cm^{-2}$.

Short time duration with bimodal distribution.

Combined EM-gravitational observations result in:

- For the first time a direct observation supports association between short GRBs and a binary neutron star coalescence event.
- Most complete characterization of BNS coalescence event to date.
- 17 August 2017 marks a milestone for multi-messenger astronomy.

17 August 2017: the key to success

HERMES

The next decade of MMA

Timely identification of the optic counterpart has been possible thanks to the closeness of the event and the combined Ligo/Virgo - GBM $\sim 30 \, \text{deg}^2$ accuracy.

Figure 1.4: Number of sources in a patch of sky grows with the third power

tomorrow

today

40MpC

These accuracies will not be enough to support gravitational interferometers in the next decade.

of the distance.

We need an all-sky burst monitor with arcmin localization capability!

105MC2

2020

HORIZ

- **2. Inquesting radiation mechanisms** studying GRB emission on a wide band of energies.
- 3. Probing inner-engine activity sampling lightcurves at fine time resolution.

..and technological requirements

1. Large number of detectors separated by a large baseline distance of several thousands km.

Detectors collecting area of 50 cm^2 and total collecting area ~ 0.5 - 1 m^2 .

 \otimes time and \in constraints

CubeSats in LEO orbit

HERMES

- 2. Wide energy range of detectors covering at least the band between 5 and 300 *keV*, with ideal range spanning between 3 *keV* and 1 *MeV*.
- 3. Temporal **resolution of detectors** $\sim 1 \ \mu s$.

 \otimes Si – detector expertise

State-of-Art detectors

How to localize GRBs

Traditional approach (VELA, IPN..). Measure time delay between the arrival of GRB light signals on *N* units separated by *d* baseline.

$\sigma \sim c \cdot \frac{\sqrt{\sigma_{cc}^2 + c^{-1} \cdot \sigma_{\vec{r}}^2 + \sigma_t^2 + \sigma_{sys}^2}}{d \cdot \sqrt{N-3}}$

$$\sigma \sim 2.4 \deg \cdot rac{\sqrt{\sigma_{cc}^2 + \sigma_{sys}^2}}{\sqrt{N-3}}$$

For σ_{SYS} , $\sigma_{CC} \sim 50 \ \mu s$ and N = 60 we get $\sigma \sim 1$ arcmin.

Wide-band energy detectors

Great detectors in small s/c come with...

Constraints!

- Wide energy band.
- Efficient 4W for the entire SC
- Light-weight \longleftrightarrow 6 kg for the entire SC
- Undemanding
 No ATCS

HORLZ N 2020

Flux in band
$$50 - 300 \ keV \sim 10 \ ph \ s^{-1} \ cm^{-2}$$
.
HERMES S/C detector surface $\sim 50 \ cm^2$.
Detector efficiency ≤ 1 .
Cross-correlating signals: $5 \ ph \ ms^{-1}$ with $N \sim 10$.
BUT we are mounting wide-band detectors, so:
Flux in band $5 - 50 \ keV \sim 10 \ ph \ s^{-1} \ cm^{-2}$.
Henceforth $N \rightarrow \frac{N}{2} \sim 5$.
Mission modularity!

Silicon Drift Detectors

SDD = Silicon Drift Detector

Remarkable features:

- Efficient in soft-X at standard thickness $450 \ \mu m$.
- Low noise: $< 10 e^{-} rms$, 25 $pA cm^{-2}$ at room temp.
- Efficient: \w VEGA-like ASICs, ~ mW per channel.
- Decent radiation hardness
- Slower when compared to other Si-detectors.

HERMES will provide the **all-sky GRB monitor** much needed in order to support the next decade of multi-messenger observations.

Beside this supportive role, HERMES will be able to do – possibly breakthrough! - **new science** on its own.

This will be possible within **CubeSat** framework and **on tight** (*t* and \$) **budget**, exploiting an innovative detector and intrinsic highly modular architecture.

The first 6 HERMES units have been funded by H2020 programme and ASI and are expected to launch in 2021 on equatorial LEO orbit.

