

Optical follow-up of galaxy cluster candidates detected by Planck

ULL

Universidad de La Laguna

10.4m GTC

2.5m INT

Alejandro Aguado 24th June 2019 – Astro@Ts

3.5m TNG

INTRODUCTION

Galaxy Clusters (GCs):

- Most massive bounded systems in the Universe
- Located in *halos*
- Trace the Large-scale structure (LSS)
- Its population is sensitive to the cosmology

GCs across the spectrum:

- X-Ray → hot intra-cluster medium & ionized metals
- Millimetre Sunyaev-Zel'dovic (SZ) effect
- Radio → Synchrotron emission from relativistic electrons

Galaxy cluster XLSSC006 ESA/XMM-Newton (X-rays); CFHT (optical); XXL Survey

THE PLANCK MISSION

- Space based observatory
- Full sky coverage mission
- May 2009 October 2013
- Two instruments:
 - LFI (Low Frequency Instrument)
 30, 44 & 70 GHz
 - HFI (High Frequency Instrument)
 - $\odot~$ 6 channels between 100 857 GHz
- Main goals:
 - > Cosmic Microwave Background (CMB) anisotropies (Temperature & polarization)
 - GCs catalogue through SZ effect
 - Gravitational lensing of the CMB, as well as the integrated Sachs-Wolfe effect
 ...

Inverse Compton scattering

ν' > ν High energy e- initially e- loses energy

SUNYAEV-ZEL'DOVICH (SZ) EFFECT AND CLUSTER IDENTIFICATION WITH PLANCK

CMB Photons

Hot gas / electrons

Blue shifted CMB photons

- Distortion of the CMB through inverse Compton scattering by high energy electrons
- Spectrum is shifted
- Drop at low frequencies and increase at higher ones

PLANCK CATALOGUES OF SZ SOURCES

Planck 2013 results. XXIX *Planck* 2013 results. XXXII

PSZ2								
60								
30,00								
	38 (<mark>.</mark> 7							
1914 A								
-36		.						

Planck 2015 results. XXVII

Sample	PSZ1 2013	PSZ1 2015	PSZ2	Common	New PSZ2
Union	1227	1227	1653	937	716
	546	546	827	502	325
Confirmed	861	947	1203	820	383
	366	292	546	99	447
	142	131	143	39	104
Total X-rayMCXCSZ clusters	501	501	603	477	126
	455	455	551	427	124
	82	82	110	79	31

Approximately 450 accesible from the La Palma Observatory with $\delta > -15^{o}$

WHY AN OPTICAL FOLLOW-UP?

• Cluster counts are very usefull to constraint cosmological parameters $(\Omega_m, \sigma_8, ...)$

$$\frac{dN}{dzdq} = \int d\Omega \int dM \frac{dN}{dzdMd\Omega} P[q|\bar{q}_m(M,z,l,b)]$$

• Cosmology is very sensitive to the survey selection function

possible biases

$$M_{500}^{HE} = (1-b)M_{500}^{true}$$

 $(1-b) = 0.8$
 $M_{500}^{HE} = 0.8$
 $M_{500}^{HE} = (1-b)M_{500}^{true}$

• Need for mass scaling law $(M_{500} - M_{SZ})$, understanding

MOTIVATION FOR OUR OPTICAL FOLLOW-UP

- The SZ surface brightness does not depend on redshift
- Does the mass bias depend on z and/or mass?
- Systematic aproach to obtain a complete selection function
- Understand the tension in cosmological parameters derived from the CMB and cluster counts, mostly in σ_8

MOTIVATION FOR OUR OPTICAL FOLLOW-UP

- The SZ surface brightness does not depend on redshift
- Does the mass bias depend on z and/or mass?
- Systematic aproach to obtain a complete selection function
- Understand the tension in cosmological parameters derived from the CMB and cluster counts, mostly in σ_8

AIM OF OUR OPTICAL FOLLOW-UP

- Validate unknown candidates
- Obtain dynamical masses
- Use these confirmed candidates to improve uncertainty in mass scaling law:

$$M_{500}^{SZ} = (1-b)M_{500}^{dyn}$$

• Do cosmology with the same clusters used for the scaling law

OBSERVATIONAL PROGRAMMES

SUMMARY

PSZ1								
Telescope	Mode	Instrument	# Nights		Redshift range			
INT	Imaging	WFC	21	86		201	-	
\\/LIT	Imaging		~15	118		204	-	
	10	ACAIVI	~9	37	07		<i>z</i> < 0.3	
GTC	LS		68 hours	50	0/	107	$0.1 \le z \le 0.85$	
	MOG	USIRIS	37 hours	27	100	101	$0.4 \le z \le 0.9$	
TNG	IVIUS	DOLORES 26 73		$0.1 \le z < 0.4$				
PSZ2								
Telescope	Mode	Instrument	# Nights	# Clusters			Redshift range	
INT	Imaging	WFC	22	201		-		
TNG	MOS	DOLORES	9	24		00	$0.1 \le z < 0.4$	
GTC	IVIUS	OSIRIS	70 hours	56		ðU	$0.4 \le z \le 0.9$	

More than
<u>10000</u>
spectra

OBSERVATIONAL STRATEGY

IMAGING

g-, r-, i-band images in order to make RGB images and color-magnitude diagrams

Estimation of photo-z from CMDs

OBSERVATIONAL STRATEGY

MOS SPECTROSCOPY

Design the mask using a preimage

Obtain the raw spectra

Acquire radial velocity and redshift

RICHNESS ESTIMATION

- Richness:
 - $rac{}{} z \leq 0.35 \rightarrow g' r'$
 - $rac{>} z > 0.35 \rightarrow r' i'$
 - $> RS \pm 0.15 mag$
 - \succ $[m_{r'}^* 1, m_{r'}^* + 1.5] mag$
 - ➤ 1 Mpc radius

RICHNESS ESTIMATION

- Richness depends on the field and redshift
- Richness significance:

$$\sigma_R \equiv \frac{R_0 - R_f}{\sqrt{R_f}}$$

where

 $R_0 \equiv \text{Original richness}$ $R_f \equiv \text{Field richness}$

VELOCITY DISPERSION ESTIMATION

MEMBER SELECTION

 ±2500 km/s in rest frame from the mean velocity and 2.5σ clipping

- Check for special cases:
 - Low/high mass clusters
 - Substructures
 - Possible interlopers...

ESTIMATION

• We make use of the estimator and the corrections to the velocity dispersion proposed by Ferragamo et al. (2019), submitted

VALIDATION CRITERIA

- Planck clusters must be massive systems:
 - High velocity dispersion
 - High richness significance
- We use the relation $\sigma_{1D} M_{200}$ by Munari et al. 2013

$$M_{200} = \left[\frac{\sigma_{200}}{A \times h(z)}\right]^{1/\alpha} 10^{15} \rm{M}_{\odot}$$

Flag	Spectroscopy	σ_R	
1	YES	> 500 km s ⁻¹ (z < 0.2) > 650 km s ⁻¹ (z > 0.2)	> 1.5 > 1.5
2	NO	_	> 1.5
3	YES	$< 500 \text{ km s}^{-1} (z < 0.2)$ $< 650 \text{ km s}^{-1} (z > 0.2)$	> 1.5 > 1.5
	NO	_	< 1.5
ND	_	_	_

PSZ2 FOLLOW-UP SUMMARY

- 184 previously unknown sources observed, 55 spectroscopically
- 79 candidates confirmed as actual GCs, 48 spectroscopically
- 105 sources remain unconfirm
- Streblyanska et al. (2019), A&A accepted
- Aguado-Barahona et al. (2019), A&A submitted

			Position (J2000)									
ID	Planck Name	SZ SNR	R. A.	Decl.	Dist.(')	< z _{spec} > ; z _{spec,BCG}	$N_{\rm spec}$	Zphot	R _{cor}	$\sigma_{\rm R}$	Flag	Notes
115 ^{<i>a,b</i>}	PSZ2 G032.31+66.07	5.14	14 37 23.35	+24 24 21.70	3.10	0.610; –	38	0.62±0.05	13.6±3.7	5.4	1	Substructured
194	PSZ2 G048.47+34.86	5.74	-	-	_	_	-	-	-	-	ND	
242	PSZ2 G058.31+41.96	4.54	-	-	-	_	-	-	_	_	ND	
421-A ^c	PSZ2 G092.69+59.92	4.90	14 26 03.78	+51 14 18.50	3.85	0.462; 0.4568	25	0.50 ± 0.05	11.6 ± 3.4	4.3	1	Rykoff et al. (2014)
$421-B^c$			14 26 13.10	+51 11 53.17	4.42	0.844 ; –	5	-	_	-	3	Burenin et al. (2018)
424^{b}	PSZ2 G093.41-16.26	4.59	22 24 07.25	+37 58 30.46	3.10	-	-	0.24±0.03	40.6±6.4	7.9	2	WHL J222407.2+375831
$432^{a,b}$	PSZ2 G094.31-11.31	4.72	22 12 56.10	+42 35 46.34	1.08	0.204 ; –	27	0.24±0.03	_	_	1	
500	PSZ2 G104.52+39.39	4.60	15 58 38.88	+70 27 24.20	5.62	-	-	$0.30{\pm}0.04$	16.8 ± 4.1	7.8	2	
511	PSZ2 G105.94-16.14	4.62			_	-	-	-	_	-	ND	
545	PSZ2 G112.54+59.53	5.37	-	-	-	-	-	-	_	-	ND	
546 ^c	PSZ2 G112.69+33.37	4.63	16 19 49.39	+79 06 24.49	4.78	0.521; 0.5194	15	0.51±0.03	-	-	1	WHL J161949.3+790624
592	PSZ2 G120.75+25.39	4.69	-	-	_	-	-	-	-	-	ND	
600	PSZ2 G122.81+24.74	4.60	-	-	_	-	-	_	_	-	ND	
613	PSZ2 G125.25+33.33	5.38	11 41 11.26	+83 27 38.91	1.80	-	-	0.20 ± 0.03	21.0 ± 4.6	4.1	2	
616	PSZ2 G125.41+27.95	4.76	-	-	_	-	-	_	_	-	ND	
620^{b}	PSZ2 G125.84-18.72	5.30	01 06 55.65	+44 04 25.72	1.81	0.189; –	46	0.19 ± 0.01	-	-	1	WHL J010709.2+440918

RESULTS FOR THE PSZ2-NORTH SAMPLE

- PSZ2-North sample:
 - Declination > -15 deg
 - > 1003 sources (60% of the full PSZ2 catalogue)
 - 852 redshift estimates

RESULTS FOR THE PSZ2-NORTH SAMPLE

- Purity: ratio between confirmed clusters and total number of SZ sources
- 857 GHz channel, tracer of thermal dust emission

SUMMARY

- 79 new clusters candidates confirmed, 105 remain unknown
- Our confirmations correspond to 20% of the total clusters confirmed in the PSZ2-North sample (z > 0.4)
- The purity of the PSZ2-North sample has been updated from 76% to 86%
- Correlation between the number of unconfirmed sources and the thermal dust emission
- Check out Strebyanska et al. (2019) & Aguado-Barahona et al. (2019) https://arxiv.org/abs/1905.13661

COMING SOON...

- Characterize the bias in the scaling relation $M_{500}^{SZ} = (1 b)M_{500}^{dyn}$
- Estimate Ω_m and σ_8 using this b-value