In the search for an optimal compact groups finder

Antonela Taverna

Collaborators: Eugenia Díaz-Giménez & Ariel Zandivarez

Astro@Ts - Trieste

Instituto de Astronomía Teórica y Experimental – IATE
Universidad de Córdoba – UNC

Istituto Nazionale Di Astrofisica – INAF
Osservatorio Astronomico Di Trieste

Monday 24th June, 2019
FRIENDS OF FRIENDS MEETING
MARCH 30TH - APRIL 3RD, 2020
CÓRDOBA, ARGENTINA

Invited Speakers
Stefano Borgani (INAF, Italy)
Stefano Cristiani (INAF, Italy)
Gian Luigi Granato (INAF, Italy)
Gabriela de Lucia (INAF, Italy)
Guillermo Bosch (UNLP, Argentina)
Alejandro Esquivel (UNAM, México)
Claudia Lagos (ICRA, Australia)
Nelson Padilla (PUC, Chile)
Bruno Dias (ESO-Chile; UNAB-Chile)
Mónica Rubio (Universidad de Chile)
Sergio Paron (IAFE, Argentina)
Martin Ortega (IAFE, Argentina)
María Gabriela Navarro (uab, Chile)
Sol Alonso (UNSJ, FCEFyN, Argentina)
Rodrigo Díaz (IAFE, Argentina)
Nicolás Duronea (UNLP, IAR, Argentina)
Mercedes Vazzano (UNLP, IAR, Argentina)
Olga Pintado (USPT, Argentina)

LOC
Viviana Bertazzi
Juan Cabral
Laura Ceccarelli
Federico Dávila
Flavia Lovos
Ornela Marioni
Gabriel Oio
Walter Weidmann
Dante Paz

SOC
Sofía Cora (IALP, Argentina)
Nelson Padilla (PUC, Chile)
Ariel Sanchez (MPE, Germany)
Hernán Muriel (IAFE - Argentina)
Table of Contents

1 Introduction

2 Objectives

3 Compact Group Samples

4 Analysis of samples

5 Conclusions and future prospects
1 Introduction

2 Objectives

3 Compact Group Samples

4 Analysis of samples

5 Conclusions and future prospects
Compact Groups of Galaxies

Highly dense galaxy systems that contain their brightest galaxies within a small isolated region.

Figure: First Compact Groups Identified. Left: Stephan's Quintet (1877) - Right: Seyfert's Sextet (1948)
Compact Groups of Galaxies

Highly dense galaxy systems that contain their brightest galaxies within a small isolated region.

Figure: First Compact Groups Identified. Left: Stephan’s Quintet (1877) - Right: Seyfert’s Sextet (1948)
Identification Criteria of CGs

Hickson criteria:

Population: $4 \leq N \leq 10; (m - m_b \leq 3)$

Compactness: $\mu \leq \mu_{\text{lim}}$

Isolation: $\Theta_n > 3 \Theta_G; (m - m_b \leq 3)$
Identification Criteria of CGs

Hickson criteria:

- **Population:** $4 \leq N \leq 10; (m - m_b \leq 3)$
- **Compactness:** $\mu \leq \mu_{lim}$
- **Isolation:** $\Theta_n > 3 \Theta_G; (m - m_b \leq 3)$
- **Velocity filtering:**
 $$c \frac{|z_i - \langle z_{cm}\rangle|}{1 + \langle z_{cm}\rangle} \leq 1000 \text{ km s}^{-1}$$
Identification Criteria of CGs

Hickson criteria:

Population: $4 \leq N \leq 10; \ (m - m_b \leq 3)$

Compactness: $\mu \leq \mu_{\text{lim}}$

Isolation: $\Theta_n > 3 \Theta_G; \ (m - m_b \leq 3)$

Velocity filtering: $c \frac{|z_i - \langle z_{cm} \rangle|}{1 + \langle z_{cm} \rangle} \leq 1000 \text{ km s}^{-1}$

Candidates in projection

\implies Redshift is only used to reject interlopers
Identification Criteria of CGs

Hickson criteria:

Population: $4 \leq N \leq 10; \ (m - m_b \leq 3)$

Compactness: $\mu \leq \mu_{lim}$

Isolation: $\Theta_n > 3 \Theta_G; \ (m - m_b \leq 3)$

Velocity filtering: $c \frac{|z_i - \langle z_{cm} \rangle|}{1 + \langle z_{cm} \rangle} \leq 1000 \text{ km s}^{-1}$

\Rightarrow Redshift is only used to reject interlopers

Candidates in projection

FoF criteria:

Friends-of-Friends algorithm

Compactness criterion
Over the years, several authors have identified CGs on different galaxy catalogs replicating the original criteria by Hickson or using the percolation algorithm Friends-of-Friends.

Mock catalogs: Díaz-Giménez & Mamon 2010; Díaz-Giménez et al. 2012, 2018; McConnachie et al. 2008.
Catalogues of CGs

Over the years, several authors have identified CGs on different galaxy catalogs replicating the original criteria by Hickson or using the percolation algorithm Friends-of-Friends.

Mock catalogs: Díaz-Giménez & Mamon 2010; Díaz-Giménez et al. 2012, 2018; McConnachie et al. 2008.

- Different surveys (apparent magnitude limit, coverage sky)
- Different bands (R, r, Ks, u)
- Different criteria (Hickson-like, FoF-like)
- With or without spectroscopic information

Due to this, comparing compact group samples is a difficult task.
Criteria Problems

Completeness: Are there groups that cannot be identified?
Criteria Problems

Completeness: Are there groups that cannot be identified?

Díaz-Giménez et al. [2018] improved the algorithm to find Hickson-like CGs and increased twice the completeness of the samples of CGs using the modified algorithm.
Criteria Problems

Completeness: Are there groups that cannot be identified?

Díaz-Giménez et al. [2018] improved the algorithm to find Hickson-like CGs increased twice the completeness of the samples of CGs using the modified algorithm.

Purity: Real CGs or Chance Alignments?
Criteria Problems

Completeness: Are there groups that cannot be identified?

Díaz-Giménez et al. [2018] improved the algorithm to find Hickson-like CGs → increased twice the completeness of the samples of CGs using the modified algorithm.

Purity: Real CGs or Chance Alignments?

← 50–70% CGs are physically dense groups
Criteria Problems

Completeness: Are there groups that cannot be identified?

Díaz-Giménez et al. [2018] improved the algorithm to find Hickson-like CGs and increased twice the completeness of the samples of CGs using the modified algorithm.

Purity: Real CGs or Chance Alignments?

50–70% CGs are physically dense groups. The percentage of chance alignment in the CG catalogs depends on the photometric band that is been used.

(McConnachie et al. [2008], Díaz-Giménez & Mamon [2010], Díaz-Giménez et al. [2012], Díaz-Giménez & Zandivarez [2015], Taverna et al. [2016])
Criteria Problems

Completeness: Are there groups that cannot be identified?

Díaz-Giménez et al. [2018] improved the algorithm to find Hickson-like CGs and increased twice the completeness of the samples of CGs using the modified algorithm.

Purity: Real CGs or Chance Alignments?

50–70% CGs are physically dense groups and the percentage of chance alignment in the CG catalogs depends on the photometric band that is been used.

(McConnachie et al. [2008], Díaz-Giménez & Mamon [2010], Díaz-Giménez et al. [2012], Díaz-Giménez & Zandivarez [2015], Taverna et al. [2016])

Completeness: √

Purity: ×
Motivation

Criteria affected by observational properties

Can we build a criteria free of observational biases?
Criteria affected by observational properties

Can we build a criteria free of observational biases?

Low % Real CGs → CGs samples highly contaminated by chance alignments

Can we improve the purity of the catalogs of CGs?
1 Introduction

2 Objectives

3 Compact Group Samples

4 Analysis of samples

5 Conclusions and future prospects
The aim of this work is to develop an independent algorithm able to identify isolated physically dense CGs, free from observational biases.

Goal

Maximize the % of real groups in the observational catalogs.
The aim of this work is to develop an independent algorithm able to identify isolated physically dense CGs, free from observational biases.

Goal

Maximize the % of real groups in the observational catalogs.
The aim of this work is to develop an independent algorithm able to identify isolated physically dense CGs, free from observational biases.

Goal
Maximize the % of real groups in the observational catalogs.

3D CG_m: Ideal sample
The aim of this work is to develop an independent algorithm able to identify isolated physically dense CGs, free from observational biases.

Goal
Maximize the % of real groups in the observational catalogs.

Objectives

3D \(CG_m \): Ideal sample

HMCG: Observable sample

Box Simulation

3D Criteria (Box)

CGs in real space

Mock Catalog

Hickson Criteria

CGs in redshift space

3D \(CG_m \)

CGs in redshift space

HMCG

\(m_i \leq m_{lim} \)
New 3-D Criteria for identifying CGs

With the aim of preserving the original idea of Hickson, we kept the main features of the classical criteria (Hickson, 1982): compactness, population and isolation.

Criteria:

- **Compactness**: Friends-of-Friends (FoF) algorithm in real space (Davis et al, 1985). We adopted a high over-density contrast limit to ensure the compactness of our groups,

 \[\frac{\delta \rho}{\rho} \geq 1000 \]

- **Population**: only groups having 4 or more members,

 \[N \geq 4 \]

How many selected groups are isolated?

Taverna, A. (IATE)
Astro@Ts - 2019
Monday 24th June, 2019 12 / 26
New 3-D Criteria for identifying CGs

- **Isolation I**: we selected only the HDGs that are not substructures of loose groups.

- **Isolation II**: we selected those groups that inside of $3 \times R_{\text{vir}}$ there not exist other galaxies (number density profile)
Isolation I: we selected only the HDGs that are not substructures of loose groups.

Isolation II: we selected those groups that inside of $3 \times R_{\text{vir}}$ there not exist other galaxies (number density profile)

The final real compact groups in 3-D are those groups that also fulfill the previous criterion, and we named them as CGs.
Table of Contents

1. Introduction

2. Objectives

3. Compact Group Samples

4. Analysis of samples

5. Conclusions and future prospects
Compact groups selection

Tools:

- Numerical simulation: Millennium I [Springel et al., 2005]

- Semi-analytical models of galaxy formation (SAMs):
 - Guo11 [Guo et al., 2011]
 - Guo13 [Guo et al., 2013]
 - Hen15 [Henriques et al., 2015]
Compact groups selection

Tools:

- Numerical simulation: Millennium I [Springel et al., 2005]
- Semi-analytical models of galaxy formation (SAMs):
 - Guo11 [Guo et al., 2011]
 - Guo13 [Guo et al., 2013]
 - Hen15 [Henriques et al., 2015]

We built a super box of twice the size of the simulation box \((2 \times L_{\text{box}} \sim 1000 \text{Mpc}/h)\) to reach in the future the redshift depth of the SDSS observational catalog.
We apply 3D Algorithm to a superbox \((L_{\text{box}} \sim 1000\text{Mpc})\)

- FoF identification with \(\frac{\delta \rho}{\rho} \geq 1000\)
- \(N \geq 4\)
- Are not a substructure of other loose groups
- Isolated system

Catalog of CGs
Compact groups selection: 3D CG_m

We apply 3D Algorithm to a superbox ($L_{box} \sim 1000 Mpc$)

- FoF identification with $\frac{\delta \rho}{\rho} \geq 1000$
- $N \geq 4$
- Are not a substructure of other loose groups
- Isolated system

Catalog of CGs in real space

Using the 3D catalog of CGs, we placed an observer on one corner of the simulation super-box

- we computed the r-band apparent magnitudes (galaxy members).
- We restricted the sample to those that have 4 or more members with $r < r_{lim}$ ($r_{lim} = 17.77$)
Compact groups selection: 3D CG_m

We apply 3D Algorithm to a superbox ($L_{box} \sim 1000 Mpc$)

- FoF identification with $\frac{\delta \rho}{\rho} \geq 1000$
- $N \geq 4$
- Are not a substructure of other loose groups
- Isolated system

Catalog of CGs in real space

Using the 3D catalog of CGs, we placed an observer on one corner of the simulation super-box

- we computed the r-band apparent magnitudes (galaxy members).
- We restricted the sample to those that have 4 or more members with $r < r_{lim}$ ($r_{lim} = 17.77$)

<table>
<thead>
<tr>
<th>SAM</th>
<th>Cosmology</th>
<th>3D-CG</th>
<th>3D-3DGm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guo11</td>
<td>WMAP1</td>
<td>61081</td>
<td>211 (0.35 %)</td>
</tr>
<tr>
<td>Guo13</td>
<td>WMAP7</td>
<td>67151</td>
<td>222 (0.33 %)</td>
</tr>
<tr>
<td>Hen15</td>
<td>Planck 1</td>
<td>30508</td>
<td>115 (0.38 %)</td>
</tr>
</tbody>
</table>
Compact groups selection: $3D \ CG_m$

We apply 3D Algorithm to a superbox ($Lbox \sim 1000 \ Mpc$)

- FoF identification with $\frac{\delta \rho}{\rho} \geq 1000$
- $N \geq 4$
- Are not a substructure of other loose groups
- Isolated system

Using the 3D catalog of CGs, we placed an observer on one corner of the simulation super-box

- we computed the r-band apparent magnitudes (galaxy members).
- We restricted the sample to those that have 4 or more members with $r < r_{lim}$ ($r_{lim} = 17.77$)

<table>
<thead>
<tr>
<th>SAM</th>
<th>Cosmology</th>
<th>$3D-CG$</th>
<th>$3D-CG_m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guo11</td>
<td>WMAP1</td>
<td>61081</td>
<td>211 (0.35 %)</td>
</tr>
<tr>
<td>Guo13</td>
<td>WMAP7</td>
<td>67151</td>
<td>222 (0.33 %)</td>
</tr>
<tr>
<td>Hen15</td>
<td>Planck 1</td>
<td>30508</td>
<td>115 (0.38 %)</td>
</tr>
</tbody>
</table>

Introducing an observer, Hen15 SAM is the most efficient at recovering compact groups.
To compare our ideal CGs with a sample of classical CGs, we constructed a mock catalogue of galaxies in redshift space.

Our mock catalogue is built by observing the simulation from a corner of the super-box. We set an apparent magnitude limit $r = 17.77$, equal to the limit we set on the CG_m to match the SDSS spectroscopic catalog for later comparison.

- α, δ: x, y, z positions
- z: Hubble flow + radial velocities (line-of-sight direction)
- rest-frame galaxy apparent magnitudes: from the rest-frame absolute magnitudes + DM
- observer-frame apparent magnitudes: k corrections.

With this information, we identify CGs in redshift space.
Using this Modified Hickson algorithm to identify CGs:

- Four or more galaxy members ($\Delta r \leq 3$)
- isolated in a cylinder ($\Delta r \leq 3$),
- Compact ($\mu_r \leq \mu_{\text{limit}}$)
- All of the members are velocity concordant

HMCGs identified:

- G11: 478
- G13: 288
- H15: 188
1 Introduction

2 Objectives

3 Compact Group Samples

4 Analysis of samples

5 Conclusions and future prospects
Comparison between 3D CG_m and $HMCG$

<table>
<thead>
<tr>
<th>1 octant (radius $2 \times L_{box}$)</th>
<th>G11</th>
<th>G13</th>
<th>H15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D CG_m</td>
<td>211</td>
<td>222</td>
<td>115</td>
</tr>
<tr>
<td>HMCG</td>
<td>478</td>
<td>288</td>
<td>188</td>
</tr>
</tbody>
</table>
Comparison between 3D CG_m and HMCG

Box Simulation

3D Criteria
- CGs in real space
 - $m_i \leq m_{lim}$

Mock Catalog
- Hickson Criteria
 - CGs in redshift space
- HMCG

<table>
<thead>
<tr>
<th>1 octant (radius $2 \times L_{box}$)</th>
<th>G11</th>
<th>G13</th>
<th>H15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D CG_m</td>
<td>211</td>
<td>222</td>
<td>115</td>
</tr>
<tr>
<td>HMCG</td>
<td>478</td>
<td>288</td>
<td>188</td>
</tr>
</tbody>
</table>

What about the completeness and purity of the HMCG sample?
Results

<table>
<thead>
<tr>
<th>1 octant (radius $2 \times L_{\text{box}}$)</th>
<th>G11</th>
<th>G13</th>
<th>H15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D CG$_m$</td>
<td>211</td>
<td>222</td>
<td>115</td>
</tr>
<tr>
<td>HMCG</td>
<td>478</td>
<td>288</td>
<td>188</td>
</tr>
</tbody>
</table>

Completeness: How many 3D CG$_m$ are HMCG?

- **Guo11:** 42 out of 211 (20 %)
- **Guo13:** 21 out of 222 (11 %)
- **Hen15:** 13 out of 115 (15 %)
Results

<table>
<thead>
<tr>
<th>1 octant (radius $2 \times L_{\text{box}}$)</th>
<th>G11</th>
<th>G13</th>
<th>H15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D CG$_m$</td>
<td>211</td>
<td>222</td>
<td>115</td>
</tr>
<tr>
<td>HMCG</td>
<td>478</td>
<td>288</td>
<td>188</td>
</tr>
</tbody>
</table>

Completeness: How many 3D CG$_m$ are HMCG?

- Guo11: 42 out of 211 (20 %)
- Guo13: 21 out of 222 (11 %)
- Hen15: 13 out of 115 (15 %)

Purity: How many 3D CG$_m$ recover the HMCG?

- Guo11: 42 out of 478 (11 %)
- Guo13: 21 out of 288 (10 %)
- Hen15: 13 out of 188 (12 %)
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Objectives</td>
</tr>
<tr>
<td>3</td>
<td>Compact Group Samples</td>
</tr>
<tr>
<td>4</td>
<td>Analysis of samples</td>
</tr>
<tr>
<td>5</td>
<td>Conclusions and future prospects</td>
</tr>
</tbody>
</table>
Conclusions and Future Work

- We designed a new algorithm in real space and applied it to semianalytical galaxies.
- We study the 3D CG_m in redshift space and we compare it with the HMCG sample.

The Hickson-like samples have low purity and completeness compared to our ideal 3D CG.

Taverna, A. (IATE)
Astro@Ts - 2019
Monday 24th June, 2019
23 / 26
Conclusions and Future Work

- We designed a new algorithm in real space and applied it to semianalytical galaxies.
- We study the 3D CG_m in redshift space and we compare it with the HMCG sample.

The Hickson-like samples have low purity and completeness compared to our ideal 3D CG.

Work in progress

What are the observational constraints that best recover the 3D sample?
Conclusions and Future Work

- We designed a new algorithm in real space and applied it to semianalytical galaxies.
- We study the 3D CG_m in redshift space and we compare it with the HMCG sample. The Hickson-like samples have low purity and completeness compared to our ideal 3D CG.

Work in progress
What are the observational constraints that best recover the 3D sample?

Preliminary result: we found that the observational properties of Hickson-like samples do not reproduce well those of the 3D CGs.

![Boxplot](image.png)

<table>
<thead>
<tr>
<th>3d_m</th>
<th>CGhm</th>
<th>3d_m</th>
<th>CGhm</th>
<th>3d_m</th>
<th>CGhm</th>
</tr>
</thead>
<tbody>
<tr>
<td>µ_r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G11 G13 H15
Acknowledgements

Thanks

Grazie mille

Gracias
References I

Díaz-Giménez, E., Zandivarez, A., & Taverna, A. 2018, Å
FRIENDS OF FRIENDS
MEETING
MARCH 30TH - APRIL 3RD, 2020
CÓRDOBA, ARGENTINA

Invited Speakers
Stefano Borgani (INAF, Italy)
Stefano Cristiani (INAF, Italy)
Gian Luigi Granato (INAF, Italy)
Gabriela de Lucia (INAF, Italy)
Guillermo Bosch (UNLP, Argentina)
Alejandro Esquivel (UNAM, México)
Claudia Lagos (ICRA, Australia)
Nelson Padilla (PUC, Chile)
Bruno Dias (ESO-Chile; UNAB-Chile)
Mónica Rubio (Universidad de Chile)
Sergio Paron (IAFE, Argentina)
Martin Ortega (IAFE, Argentina)
María Gabriela Navarro (UAB, Chile)
Sol Alonso (UNSJ, FCEFyN, Argentina)
Rodrigo Díaz (IAFE, Argentina)
Nicolás Duronea (UNLP, IAR, Argentina)
Mercedes Vazzano (UNLP, IAR, Argentina)
Olga Pintado (USPT, Argentina)

LOC
Viviana Bertazzi
Juan Cabral
Laura Ceccarelli
Federico Dávila
Flavia Lovos
Ornella Marioni
Gabriel Oio
Walter Weidmann
Dante Paz

SOC
Sofía Cora (IALP, Argentina)
Nelson Padilla (PUC, Chile)
Ariel Sanchez (MPE, Germany)
Hernán Muriel (IATE - Argentina)