LSB (Low Surface Brightness) galaxies: new hints for dark matter?

AstroTS Trieste, June 26 2019

Chiara Di Paolo

LSB galaxies rotation curves

emit much less light per area than normal galaxies

MALIN 1

Although following the large-scale structure of galaxies, they are locally more isolated than other galaxies

- ~ Extended gas disks with low gas surface densities
- Low metallicities makes gas cooling difficult and the stars difficult to form

~ Likely evolving very slowly with very low star formation rates

LSB galaxies rotation curves

$$R_D = \text{disk scale length} \\ \text{exponential stellar disk} \\ R_{opt} = 3.2 R_D \rightarrow \begin{cases} 83 \% \text{ total} \\ \text{luminosity} \end{cases} \\ V_{opt} = V(R_{opt}) \end{cases}$$

72 Low Surface Brightness galaxies
(Di Paolo, Salucci, Erkurt (2018))
1601 circular velocity measurements
$$24 < V_{opt} < 300 \, km/s$$
emit much less
light per area
than normal galaxies

https://arxiv.org/abs/1805.07165

NOTE: \sim radial dependence of f_b

- different $f_b(r)$ in galaxies of different size
- ~ different $f_b(r)$ in galaxies of different morphology

DENORMALIZATION PROCESS

All the basis to construct the **SCALING RELATIONS** are known

All the basis to construct the **SCALING RELATIONS** are known

All the basis to construct the Universal Rotation Curve (URC) are known

RESULT $V^2(r/R_{opt}) = V_d^2(r/R_{opt}) + V_{DM}^2(r/R_{opt})$ function of V_{opt}

Moreover, further improvements by also including the **compactness**...indeed:

Moreover, further improvements by also including the **compactness**...indeed:

COMPACTNESS (C):

discrepancy between the measured R_{opt} and a mean expected value \bar{R}_{opt}

Moreover, further improvements by also including the **compactness**...indeed:

Compactness

RAR: Gravitational acceleration relation

RAR: Gravitational acceleration relation

36 dwarf disk galaxies (Karukes & Salucci)

303 circular velocity measurements

a) McGaugh relation breaks down

b) radial dependence

 $19 < V_{opt} < 61 \, km/s$

RAR: Gravitational acceleration relation 72 Low Surface Brightness galaxies $24 < V_{opt} < 300 \, km/s$ (Di Paolo & Salucci) emit much less 1601 circular velocity measurements light per area than normal galaxies -9.0 McGaugh -9.5 -10.0 Log g[m/s²] -10.5 LSB galaxies -11.0 dwarf disc galaxies $x = r/R_{opt}$ -11.5 Newtonian Red $0 < x \le 0.4$ -12.0 Magenta $0.4 < x \le 1$ Blue x > 1-12.5 <u>-12.0</u> -11.5 -11.0 -10.5 -10.0 -9.5 -90 $\log g_b [m/s^2]$

RAR: Gravitational acceleration relation

For all single data measurements (r, V(r)) we evaluate:

 $\begin{cases} g(r) = V^2(r)/r & \longrightarrow \text{ only from observations (errors } \simeq 10\%) \\ g_b(r) = f_b(r)g(r) & \longrightarrow \text{ from observations + curves modelling (errors } \simeq 20 - 30\%) \end{cases}$

LSB

$$x = r/R_{opt}$$

$$g$$
 , g_b , x test

radial dependence

-12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 -9.0 Log g_b[m/s²]

-12.0

Red 0 < x ≤ 0.4

agenta 0.4 < x ≤

Blue x > 1

Dwarf disks

$$x = r/R_{opt}$$

$$g$$
 , g_b , x test

Dwarf disks

 $x = r/R_{opt}$

Dwarf disks

$$x = r/R_{opt}$$

$$\left[\begin{array}{cccc} g & , \ g_b & , \ x & {\sf test} \end{array}
ight]$$

Simple translations and/or dilations

$$x = r/R_{opt}$$

universal relation

g , g_b , x single galaxies test

Conclusions from LSB analysis

- LSB galaxies give rise to the **URC**

~ LSB scaling relations similar but not identical to normal Spirals ones

relevance of the compactness in LSB galaxies —> new hints?

phenomenological understanding of our results and McGaugh results

in the standard **baryonic + dark matter** scenario and mass distribution properties

Thanks for the attention

	$10^{-3}M_{\odot}/pc^{3}$	kpc	10^8M_{\odot}	$10^{11}M_{\odot}$		
(1)	(2)	(3)	(4)	(5)	(6)	
1	3.7 ± 1.4	10.7 ± 4.3	8.8 ± 1.8	1.0 ± 0.4	0.37	$\alpha =$
2	5.1 ± 1.1	12.8 ± 3.0	38 ± 3	2.4 ± 0.9	0.49	
3	3.7 ± 0.5	17.1 ± 1.9	130 ± 5	4.0 ± 1.3	0.52	
4	$1.7^{+3.2}_{-1.1}$	$29.7^{+84.1}_{-22.0}$	421 ± 40	8.4 ± 3.5	0.76	
5	$0.8^{+1.1}_{-0.4}$	$99.1^{+750.5}_{-87.5}$	1730 ± 117	112 ± 55	0.82	

 $= \frac{\langle V_D^2(R_{opt}) \rangle}{\langle V_{tot}^2(R_{opt}) \rangle}$ baryonic fraction

	$10^{-3}M_{\odot}/pc^{3}$	kpc	10^8M_{\odot}	$10^{11}M_{\odot}$		
(1)	(2)	(3)	(4)	(5)	(6)	
1	3.7 ± 1.4	10.7 ± 4.3	8.8 ± 1.8	1.0 ± 0.4	0.37	$\alpha =$
2	5.1 ± 1.1	12.8 ± 3.0	38 ± 3	2.4 ± 0.9	0.49	
3	3.7 ± 0.5	17.1 ± 1.9	130 ± 5	4.0 ± 1.3	0.52	
4	$1.7^{+3.2}_{-1.1}$	$29.7\substack{+84.1 \\ -22.0}$	421 ± 40	8.4 ± 3.5	0.76	
5	$0.8^{+1.1}_{-0.4}$	$99.1^{+750.5}_{-87.5}$	1730 ± 117	112 ± 55	0.82	

 $= \frac{\langle V_D^2(R_{opt}) \rangle}{\langle V_{tot}^2(R_{opt}) \rangle}$ baryonic fraction

Baryonic fraction in the whole galaxy

DENORMALIZATION

takes into account that all the double normalised RCs are similar to their co-added double normalised RC in each single velocity bin

 α

good approximation :

the relations obtained for the co-added RCs are assumed to be true also for the single galaxies

 $R_c/R_d^{1.42} = const.$ one relation in all velocity bins

 R_{c}

 M_d

 M_d -=const. $V_{opt}^2 R_{opt}$ one different value in each velocity bin

> for a DM cored Burkert profile

$$M_{DM}(R_{opt}) = G^{-1}(1-\alpha)V_{opt}^2R_{opt}$$

$$\alpha = \frac{V_d^2(R_{opt})}{V^2(R_{opt})} = \text{baryonic fraction at optical radius,}$$

one different value each velocity bin

$$M_{DM}(r) = 2\pi\rho_0 R_c^3 [ln(1+r/R_c) - tg^{-1}(r/R_c) + 0.5ln(1+(r/R_c)^2)]$$

g, g_b , x interpreting the evidence

g, g_b , x interpreting the evidence

baryonic matter dominant till $\sim R_D$ $g \gg g_b$

g, g_b , x interpreting the evidence

For completeness:

Rosenbaum & Bomas, 2004