The Price of Shifting the Hubble Constant

Ruchika

CTP, JMI, Delhi, India

June 24, 2019

Reference: Phys. Rev. D 97,103511(2018) Jarah Evslin, Anjan A Sen, Ruchika Institute for Fundamental Physics of the Universe Trieste, Italy

<ロト <四ト <注入 <注下 <注下 <

Outline of the Talk

- Hubble Expansion of Universe and what it is governed by?
- How it is measured?
- How it differs, when measured by low red-shift and high red-shift observations?
- Is something wrong with the systematics OR some interesting physics is waiting to be known?
- Possible solutions
- Conclusion

Basic Cosmology \diamond

Einstein Equation

イロト 不得下 イヨト イヨト 二日

Basic Cosmology \diamond

So, the Hubble Parameter equation

$$H^2 = \frac{8\pi G\rho}{3} - \frac{k}{a^2}$$

where $H = \frac{\dot{a}}{a}$

A D N A B N A B N A B N

where a(t) = scale factor

Or simply,

$$\left[\frac{\dot{a}}{a}\right]^2 \propto \rho_{total}$$

Basic Cosmology \diamond

So, the Hubble Parameter equation

$$H^2 = \frac{8\pi G\rho}{3} - \frac{k}{a^2}$$

where $H = \frac{\dot{a}}{a}$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

where a(t) = scale factor

Or simply,

$$\left[\frac{\dot{a}}{a}\right]^2 \propto \rho_{total}$$

So, Now the question is: What does this ρ_{total} comprise of? Or, What does this expansion goverened by?

Present(z=0) ◊

Ruchika (CTP, JMI, Delhi, India) The Price of Shifting the Hubble Constant

June 24, 2019 5 / 18

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cosmology after Planck-2018 \diamond

Concordance \land CDM model (P.Ade et al. A& A 2018): $H_0 = 67.37 \pm 0.54 Km/sec/Mpc$

P.Ade et al. A&A, 2018

CPL Parameterisation: $w = w_0 + w_a(1 - a)$

Tensions in $H_0 \diamond$

 \diamond Planck-2018 measurement : $H_0 = 67.37 \pm 0.54$ Km/s/M pc (Aghanim et al. 2018)

Tension with Plank H₀ Measurements

◊ Recent measurement using local measurements by HST (R18): $H_0 = 73.48 \pm 1.66$ Km/s/M pc (Riess et al. 2018) (3.7 σ higher than the Planck-2018)

◇ R18 measurement is also consistent with independent measurement by H0liCOW using Time-Delay Strong Lensing Probe: $H_0 = 71.9^{+2.4}_{-3.0} \text{ Km/s/M pc} \text{ (Bonvin et al. 2017)}$ $(1.84 \sigma \text{ higher than the Planck-2018 })$

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Tensions with $\land CDM \diamond$

Ruchika (CTP, JMI, Delhi, India) The Price of Shifting the Hubble Constant

June 24, 2019 8 / 18

Let's Discuss Possibility of New Physics!

Ruchika (CTP, JMI, Delhi, India) The Price of Shifting the Hubble Constant

→ ▲ ≣ → ≣ → へ へ June 24, 2019 9 / 18

A D N A B N A B N A B N

Here we ask ourselves these questions. \diamond

• Is H_0 tension correlated to any other Cosmological Parameter? \rightarrow Answer is: Yes, Since BAO measures the combination of $r_d H_0$.

• Can we break this degenracy of $r_d H_0$ and how? \rightarrow Answer is: Yes, If we can measure H_0 independently, then one can

estimate r_d .

Data Used \diamond

- * BAO measurements from 6dF, SDSS-DR7(MGS) and eBOSS.
- * BAO measurements from BOSS DR12 and Lyman-alpha forest sample.
- * Time-delay distance measurement through Strong Lensing by H0LiCow.
- * Angular Diameter Distance measurements by Megamaser Cosmology Project for galaxies UGC3789, NGC6264 and NGC5765b.
- \star Distance ladder measurement of $H_0 = 73.24 \pm 1.24$ Km/s/M pc by Riess et al. (2016)

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Maximum Likelihood values and 1D marginalised 68% confidence intervals of parameters for respective models.

Taking value of $H_0 = 73.24 \pm 1.24$ Km/s/M pc.

	$\Omega_m 0$	r _d	W0	Wa
∧CDM	0.295 ± 0.019	139.2 ± 3.2	N/A	N/A
				,
wCDM	0.277 ± 0.027	1353 ± 38	-0.76 ± 0.14	N/A
	0.211 ± 0.021	100.0 ± 0.0	0.10 ± 0.11	,,,
CDI	0.241 0.094	126 1 2 0	0.77 + 0.17	0 44 1 0 52
CPL	0.241 ± 0.004	130.4 ± 3.9	-0.77 ± 0.17	0.44 ± 0.33

Also, $H_0 = 136.41 \pm 3.82$ confirmed model independently by Salvatore et al.(2018).

(日) (同) (日) (日)

Results \diamond

 $r_d = 147.26 \pm 0.29 Mpc$ (Planck)

- ΛCDM : 2.52 σ away from Planck
- wCDM : 3.14 σ away from Planck
- CPL : 2.79 σ away from Planck

So, our results are quite model independent. So, The Price of shift in Hubble constant is the shift in r_d . **Results** \diamond

Ruchika (CTP, JMI, Delhi, India) The Price of Shifting the Hubble Constant

■ ▶ ◀ ■ ▶ ■ つへへ June 24, 2019 14 / 18

< □ > < □ > < □ > < □ > < □ > < □ >

Results \diamond

June 24, 2019 14 / 18

э

< □ > < □ > < □ > < □ > < □ > < □ >

Interpretation \diamond

 r_d is the Sound Horizon at drag epoch

$$r_d = \int_0^{t(zd)} c_s(1+z) dt$$

where $c_s = \frac{1}{\sqrt{3(1+R)}}$ and $R = 3\frac{\rho_b}{\rho_r}$

Physics: sound waves in early Universe propagate until radiation and matter decouple.

Lower r_d as compared to Planck suggets:

♦ changing z_d
♦ modifying the speed of sound
♦ changing the age of universe at drag epoch
♦ changing primodial fluctuations

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Credit: Blake & Moorfield

Ruchika (CTP, JMI, Delhi, India) The Price of Shifting the Hubble Constant

Checking Consistency with CMB \diamond

- \diamond Is the reduction in r_d consistent with CMB constraints?
- \diamond CMB best constrains the angular size of the acoustic scale θ .
- ◇ Ignoring the small difference between drag epoch and recombination epoch $\theta = r_d/D_A(z)$. Higher $H_0 \Rightarrow$ Lower r_d (BAO constraints $r_d H_0$) \Rightarrow Lower $D_A(D_A \propto 1/H_0)$
 - $\Rightarrow \theta \; \mathsf{Intact}$

♦ This is fortunate, since any shift in acoustic scale, will shift all the peaks.

(4月) (4日) (4日) 日

- Along with Hubble Tension, there is a similar tension involving sound horizon at drag epoch from low-redshift and Planck measurements.
- ♦ It does not depend on dark energy behaviour.
- One Solution: One needs to modify the early Universe cosmology.

THANK YOU!

Ruchika (CTP, JMI, Delhi, India) The Price of Shifting the Hubble Constant

June 24, 2019 18 / 18

2

<ロト < 四ト < 三ト < 三ト