Investigating the connection between galactic disks and the highest column density absorbers with the GAEA semi-analytical model

Astro@TS

PhD student: Serafina Di Gioia Supervisor: Stefano Cristiani Co-supervisor: Gabriella De Lucia

IFPU, 24/06/2019

How do we observe DLAs (Damped Lyman- α systems)?

The densest absorbers are defined by their value of HI column density : $log(N_{HI}) >= 20.3$

Properties of DLAs

Properties of DLAs

Different techniques to search for DLAs counterparts

971214	980326	980329	980519
990123	990510	990705	990712
000301C	000418	000926	010222

Possible scenarios for the origin of DLAs

Possible scenarios for the origin of DLAs

(data don't allow an easily identification of the population of DLA host galaxies)

What is a SEMI-ANALYTICAL MODEL for the galaxy formation?

The GAEA (Galaxy Evolution and Assembly) model includes:

- 1. Stellar feedback scheme based on results from hydro-simulation (Hirschmann et al 2016)
- 2. Star formation based on molecular prescriptions (Ref: L.Xie et al. 2016)
- 3. non instantaneous recycling of gas and metals and reproduces very well:
- 1. the Stellar mass function up to $z \sim 7$
- 2. the \mathbf{M}_{star} metallicity relation up to $z \sim 2$
- 3. the HI mass function at $z \sim 0$

The GAEA (Galaxy Evolution and Assembly) model includes:

- 1. Stellar feedback scheme based on results from hydro-simulation (Hirschmann et al 2016)
- 2. Star formation based on molecular prescriptions (Ref: L.Xie et al. 2016)
- 3. non instantaneous recycling of gas and metals and reproduces very well:
- 1. the Stellar mass function up to $z \sim 7$
- 2. the \mathbf{M}_{star} metallicity relation up to $z \sim 2$
- 3. the **HI mass function** at $z \sim 0$

Millennium Simulation

MRI

 $L_{box} = 500h^{-1}cMpc \qquad m_p = 8.61 \, \mathbf{x} 10^8 \frac{M_{\odot}}{h}$

MRII

 $L_{box} = 100h^{-1}cMpc$ $m_p = 6.89 \mathbf{x} \ 10^6 \frac{M_{\odot}}{h}$

Resolution effects on the HI content in MRI and MRII

- thick lines → MRII
- thin lines → MRI

HOD model

Then we populate the box with haloes with $M_{halo} \leq 10^{9.1} M_{\odot}$ using an HOD model based on :

- Tinker HMF
- extrapolation of the median relation in MRII for

- 1 SMHM relation
- 2 CG mass VS HM (halo mass)
- 3 $R_s(CG)$ VS Halo Mass
- _4 $R_s(SD)$ VS Halo Mass

Creation of the catalog of simulated DLAs

To compare our results with the observation of DLAs we focus on 4 main observables:

 $\begin{bmatrix} 1. & \Omega_{DLA} \\ 2. & \text{CDDF} \\ 3. & \left[\frac{Fe}{H}\right] \mathbf{VS} \text{ N(HI)} \\ 4. & \Omega_Z \end{bmatrix}$

1st observable: Ω_{DLA}

-21 --22 --23 -Median CDDF f (N) in the redshift range -24 -2 < z < 3.89-25 --26 --27 - L 18 21 19 20 22 23 log N(HI)

3rd observable: $\left[\frac{Fe}{H}\right]$ vs N_{HI}

4th observable: Ω_Z

Conclusions

- In our model the largest contribution to the DLAs' cross-section comes from galaxies contained in intermediate mass haloes (MRII)
- Our model underestimates the number and HI content of DLAs in the redshift range 2-3.89
- Our estimates of the [Fe/H] are in agreement with the data from literature, within 1 sigma error (although with a hint of opposite trends which we will investigate in the future)
- Once we applied the gradient, we find a metallicity evolution in agreement, within the errors, with the data for the dust corrected metallicity of DLAs(De Cia et al, 2018)

