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The Standard ΛCDM Cosmology

Simplest model to reproduce observatons with only six parameters.

Baryonic matter

Dark matter

Dark Energy

68.9%

26.1%

5%

95% of the Universe made of
unknown dark components.

After Planck, we need informaton from 
3D structures: LSS surveys (Euclid).



The Power Spectrum

Matter density contrast field

Power Spectrum

What we actually observe is
the galaxy density field:

Galaxy power spectrum Pg(k)  

It’s related to the variance of the field.

[Tegmark et al., 2004]



Non-gaussianities from non-linearities: Bispectrum

Mean = 0, variance ~P(k). What about higher-order moments?

If field is gaussian:

We focus here on N=3: the bispectrum.

However, gravity is a non-linear process.
Non-linear evoluton introduces non gaussianites: 



Motivation

N-body vs Levy flight
[Sefusatti & Scoccimarro, 2005]
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Outline of the Project

Build a likelihood pipeline that can fit the bispectrum, accountng for different (usually neglected) 
effects that can introduce both statstcal and/or systematc uncertaintes.

Attenton on proper definiton of goodness-of-fit and on developing tools for model selection.

The likelihood has been tested on a large number (~300) of N-body simulatons.

Results will appear in a soon-to-be-submitted paper [AO+2019]



Theoretical model

Fixed cosmological parameters; non-linear, non-local bias expansion for the halo field:

Tree-level halo bispectrum:

Cosmology is only k-dependent terms, computed only once: fast likelihood evaluation in MCMC.

   is the full non-linear density field:

Five parameters:

Attenton has to be paid on the way triangles are binned in the Fourier bins.



Covariance matrix

The covariance matrix has been estmated using a set of 10,000 mock simulatons with the same 
cosmology of the N-body simulatons.

We calibrated the halo catalogs in a way that the total power spectrum (including shot-noise) 
matched the one from the N-body.

This gives the best match in the covariance matrix.

Large number of mocks is due to the large number of data-points (triangular Fourier bins) to fit.



Likelihood function

Multvariate gaussian likelihood:

Anderson-Hartlap correcton:

To have a non-singular covariance matrix, n > p;     bispectrum; p = O(1000)
The estmated covariance matrix is stll a random object, sampled from a distributon

[Sellentn & Heavens (2016)]



Goodness of fit and model selection tools

Goodness of fit:
● Chi-squared test (frequentst concept)
● Posterior predictive p-value (ppp), fully Bayesian:

“Classical p-value averaged over the posterior distribution
of parameters under the null hypothesis”

Model selection:
● Deviance Information Criterion (DIC)

● Savage-Dickey density ratio to compute the Bayes Factor



Results: Benchmark analysis, parameters

Posteriors (1D and 2D) for the 
parameters are consistent for 
different bin widths, at all kmax.

[AO+19 in prep.]



Results: Benchmark analysis, goodness of fit

The             and the ppp give similar results. The model appears to be consistent with the data 
up to ~0.075h Mpc-1, but the range of validity extends to ~0.095h Mpc-1 for Δk=2kf.

[AO+19 in prep.]



Power spectrum + bispectrum: what would we gain?

[AO+??, preliminary]

kmax ~ 0.06 h Mpc-1
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Power spectrum + bispectrum: what would we gain?

The tree-level bispectrum alone is not able to put 
tght constraints on b1.
The 1-loop power spectrum alone is not able to 
constrain at all the non-linear e non-local bias 
parameters at large scales.
Using both, we can reduce the costraints an all 
bias parameters!

[AO+??, preliminary]

kmax ~ 0.06 h Mpc-1



Summary & Conclusions

Galaxy bispectrum contains informaton not present in power spectrum and that we can extract.

We have built a likelihood for the robust inference of parameters from the bispectrum, 
accountng for effects introducing both statstcal and systematc uncertaintes.

Goodness of fit shows a good agreement between theory and data up to ~0.075h Mpc-1

Model selecton can help us in reducing the dimensionality of the parameter space.

Bispectrum can help in constraining parameters even at large scales.



Thank you for your attention!



State of the Art

However, the models used are not valid at the level of future precision surveys, such as Euclid.
Moreover, covariance not properly accounted for (if any at all).

Gil-Marin et al. (2016):
Bispectrum in BOSS analysis

Pearson & Samushia (2017):
BAO detecton in the bispectrum



Covariance

The gaussian component of the bispectrum variance is

It is important to match the total power spectrum (including shot-noise) of mocks and N-body. 
We choose the minimum halo mass of the mocks in such a way that this happens.

The cross-correlatons are consistent with the ones from the N-body, up to a lower noise.
[AO+19 in prep.]



Binning effects

Model must be properly averaged over the bin as well.

Computationally expensive! Almost impractcal when cosmology is changed. Alternatve:

However, this can differ from the properly averaged model by ~20%.

Also possible to evaluate the model at the central triangle (k1,k2,k3): large deviatons!

Roughly speaking, similar to               vs.             .

Measurements are performed over bins.



Model selection: Deviance Information Criterion

We define the deviance as:

The Deviance Informaton Criterion DIC is then

The second term is an estmator of the effectve number of parameters, and represent a 
penalizaton for models with a large number of parameters.

We are interested in the difference of DIC between two models,               .

In general, the model with the higher DIC is disfavoured, with                           being substantal. 



Model selection: Savage-Dickey density ratio

In order to evaluate the evidence that the data provide in favour of a model Mj w.r.t model Mk, 
we define the Bayes factor:

In case of properly nested models, the Bayes factor can be computed using the Savage-Dickey 
density rato

BFjk > 3, 10, 100  substantal, strong, and decisive evidence against ⇒ Mk (“Jeffreys scale”).



Binning effects

Measurements are performed over bins; model must be properly averaged over the bin as well.

Computationally expensive! Almost impractcal when cosmology is changed. Alternatve:

However, this can differ from the properly averaged model by ~20%.

Also possible to evaluate the model at the central triangle (k1,k2,k3): large deviatons!

Roughly speaking, similar to               vs.             .



Goodness-of-fit: chi-squared

More of a frequentst approach, used as a reference:

A fit as “good” if this chi-squared is between the values corresponding to p-values of 0.05 and 
0.95, provided the number of degrees of freedom            .

Evaluated as a functon of          , it gives the range of scales in which the theory is valid.



Goodness-of-fit: Posterior Predictive p-value

“Classical p-value averaged over the posterior distribution
of parameters under the null hypothesis”

✗✓

ppp

The fit is “bad” if ppp is too close to either 0 or 1.

Posterior
Replicates

Evaluated as a functon of          , it gives the range of scales in which the theory is valid.



Model selection tools

Deviance:

Deviance Information Criterion:

The second term (effectve number of parameters) penalizes models with many parameters.
We are interested in the difference of DIC between two models,              , favoring the model 
with lower DIC, and with differences of 5 being substantal.

The Savage-Dickey density ratio gives the Bayes factor in the case of properly nested models:



Model selection: shot-noise parameters

Three different models: α1=α2=0, α1=α2, {α1,α2}

Degredaton of posteriors when adding parameters.

[AO+19 in prep.]



Model selection: shot-noise parameters

DIC does not prefer substantally any model only at smaller scales (more important non-linearites), 
but Bayes Factor favors models with fewer parameters even at larger scales.

[AO+19 in prep.]



Model selection: bias parameters

We tested some (unphysical) local bias models and a few models relatng bias parameters through 
fitting functons, to lower the dimensionality of parameter space.

[AO+19 in prep.]



Model selection: bias parameters

The local models are all discarded wrt our “benchmark” model; from the other models, only the 
one from [Lazeyras et al. 2016] works as well as the “benchmark” model, with smaller posteriors.

[AO+19 in prep.]



Results: binning effects

Comparison between model properly 
averaged (binned), evaluated at 
average modes (effectve), or 
evaluated at central modes 
(uncorrected).

“Effectve” gives similar results wrt to 
“binned”; “uncorrected” is strongly 
biased wrt to the binned case, and 
works the worst.

[AO+19 in prep.]



Results: covariance statistical uncertainty

● Sellentn & Heavens vs Anderson/Hartlap give the same results.
● Variance-only gives similar parameters posteriors, but less consistent at smaller scales.
● Goodness-of-fit tends to favour the variance-only likelihood, but could be due to the matching 

of mocks and N-body.
● Worse goodness-of-fit if we use 2000 mocks to evaluate the covariance matrix.

Covariance with 10000 mocks Covariance with 2000 mocks

[AO+19 in prep.]
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