A robust measurement of the first higher-derivative bias parameter of dark matter halos

Titouan Lazeyras (SISSA)

with F. Schmidt (MPA)

June 24th 2019 Astro@TS

arXiv:1904.11294

Contents

Dark matter halo bias

2 Higher-derivative bias from amplified-mode simulations

Guidelines

Dark matter halo bias

2 Higher-derivative bias from amplified-mode simulations

Motivation

Why are we interested in the bias parameters of dark matter halos?

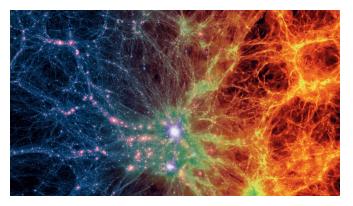


Image credit: Illustris collaboration

Bias formalism: link the distribution of LSS tracers to that of the underlying dark matter

Halo bias

 \triangleright Perturbation theory: statistics of halos written in terms of bias parameters b_O multiplying operators O constructed out of the matter density field δ_m and the tidal field

$$\mathcal{K}_{ij} = \mathcal{D}_{ij}\delta_m = \left(\frac{\partial_i\partial_j}{\nabla^2} - \frac{1}{3}\delta_{ij}^K\right)\delta_m$$

$$\delta_h(\tau, \mathbf{x}, M) = \sum_O b_O(\tau, M) O(\tau, \mathbf{x})$$

e.g. Desjacques et al. (2018)

 $\delta_{\it h}$: fractional number density perturbation of halos

 \triangleright Up to 2nd order:

$$\delta_h = b_1 \delta_m + b_2 \delta_m^2 + b_{K^2} \mathcal{K}^2 + b_{\nabla^2 \delta} \nabla^2 \delta_m$$

$$\mathcal{K}^2 = \mathcal{K}_{ij} \mathcal{K}^{ji}$$

Guidelines

Dark matter halo bias

2 Higher-derivative bias from amplified-mode simulations

Amplified-mode simulations

> Superimpose a plane wave to the initial random density field

$$\delta^{(1)}(\mathbf{x}) = \delta_s^{(1)}(\mathbf{x}) + \Delta \cos(\mathbf{k}_0 \cdot \mathbf{x})$$

 \rhd Amplifies contribution of $b_{\nabla^2 \delta} \nabla^2 \delta_{\it m}$ in bias expansion

$$\delta_h = b_1 \delta_m + b_{\nabla^2 \delta} \nabla^2 \delta_m$$

> Implementation in simulations straightforward since only need to modify initial distribution of particles before running the simulation in traditional way

$$\delta^{(1)}(\mathbf{k}) = \delta_s^{(1)}(\mathbf{n}k_F) + \frac{\Delta L^3}{2}(\delta_{\mathbf{n},\mathbf{m}}^K + \delta_{-\mathbf{n},\mathbf{m}}^K)$$

Estimating $b_{ abla^2\delta}$

> Halo density field

$$\delta_h(\mathbf{x}) = \frac{n_h(\mathbf{x})}{\bar{n}_h} - 1 = B_h \cos(k_0 x), \quad B_h = [b_1 - b_{\nabla^2 \delta} k_0^2] B_m$$

 \triangleright Need to estimate $B_h \to \text{use a } \chi^2$ given by

$$\chi^{2} = \sum_{x_{i}} \frac{1}{\mathcal{N}^{2}} \left[n_{h}(\mathbf{x}_{i}) - \bar{n}_{h} \left(1 + B_{h} \cos(k_{0} x_{i}) \right) \right]^{2}$$

$$\frac{\partial}{\partial B_h} \chi^2(B_h) \stackrel{!}{=} 0 \Leftrightarrow \hat{B}_h = \frac{2 \sum_{\text{halos}} \cos(k_0 x_i)}{N_{\text{halos}}}$$

Estimating $b_{\nabla^2\delta}$

▷ In practice

$$\frac{\hat{B}_{h}^{i}(k_{0},+\Delta)-\hat{B}_{h}^{i}(k_{0},-\Delta)}{2\Delta}=b_{1}-(b_{\nabla^{2}\delta}+b_{1}\ C_{\mathrm{s,eff}}^{2})k_{0}^{2}$$

ightharpoonup Run a suite of amplified-mode simulations for various k_0 , and fit a second-order polynomial in k_0 to this ratio to get an estimate for $b_{\nabla^2 \delta}(M)$

 \triangleright Use the results of Lazeyras+ (2015) for b_1

ightharpoonup Effective matter sound speed $C_{
m s,eff}^2$ measured from 1-loop matter power spectrum

$$\frac{P_{mm}(k) - P_{1-\text{loop}}(k)}{P_{L}(k)} = -2C_{s,\text{eff}}^{2}k^{2}$$

Other measurements and prediction

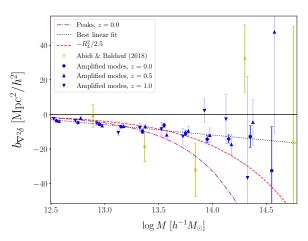
 $ho \; b_{
abla^2 \delta} \; \mathsf{has} \; \mathsf{units} \; [\mathsf{length}]^2 o \mathsf{naive} \; \mathsf{expectation}$

$$b_{\nabla^2\delta}(M)\sim -R_L^2(M)$$

ightharpoonup Peak model together with velocity bias ightharpoonup scale-dependent bias for peaks

▷ Abidi & Baldauf (2018): fit to 1-loop halo-matter power spectrum with 1 free parameter

$$P_{hm}^{1-loop}(k) \propto b_1, b_2, b_{K^2}, b_{\mathrm{td}}, b_{\nabla^2 \delta}$$



arXiv:1904.11294

$$b_{\nabla^2 \delta}(M) = -5.9 \log M + 71.3 (\text{Mpc/}h)^2$$

Guidelines

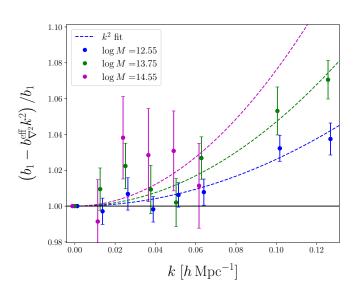
1 Dark matter halo bias

2 Higher-derivative bias from amplified-mode simulations

Conclusions and Outlook

- ullet First robust measurement of $b_{
 abla^2\delta}$ using amplified-mode simulations
- Results consistent with $-R_L^2$ as naively expected
- Good overall agreement of our results with Abidi & Baldauf (2018) as a cross-check of our results
- Important implications for future works such as determining the reach of perturbation theory, studying stochasticity of halo formation (coming from small scale perturbations) in more details, or accurately model galaxy statistics for surveys by including more bias parameters

Measuring b(k)



Comparison with 1-loop P_{hm} results

