
Machine Learning Basics

Claudio Gentile

Google Research, NY

cla.gentile@gmail.com, cgentile@google.com

Pula

Sept 17th, 2019

1

Goal and content

Goal: Give quick introduction to basic ideas and methods in Machine Learning

Content:

• Introduction

• Decision trees classifiers

• Nearest Neighbor classifiers

• Aggregation (ensemble) methods

• Performance evaluation and workflow

• Empirical risk minimization and algorithms
(SGD, Logistic regression, BackProp, etc.)

• Clustering (flat and hierarchical)

• Concluding remarks

2

Introduction/1

Machine Learning:

• Extraction of knowledge (or regularity patters) from sources of data
(images, text, web server logs, signals, etc.)

• Knowledge extraction =⇒ (inductive) Inference

• Delivers both methodology and practical tools to solve tasks which are
not easy to formalize and/or are intrinsically complex

(Supervised) Machine Learning algorithm:
Machine/automated tool that acquires knowledge/desired behavior not through
direct instruction but through examples of such behavior (supervision)

• Widespread interest in both Science and Industry

• Requires (fast) computing tools

3

Introduction/2

Basic assumption: Underlying regularity in the source of data

For instance:
Want to learn the concept of ”tree” out of database of images of trees
(positive examples) and non-trees (negative examples)

Trees have something statistically significant in common that need to be
learnt based on examples

Basic task:
Write a computer program (any language you like) that, given in input a
bitmap image, outputs ”1” if image contains a tree, and ”0” otherwise

4

Introduction/3

(Supervised) machine learning algorithm:

• Input: Training set (e.g. set of images)

• Output: Predictor (or model, hypothesis) ...

• ... which is able to predict well unseen patterns (for given performance
measure)

5

Introduction/4
Some relevant questions:

• Exploiting prior knowledge (contextual, etc.)

• Data Preprocessing

• Choice of knowledge representation (or geometry):
Simple and natural for task at hand, but complex enough to be able to
represent underlying phenomenon (inductive bias)

=⇒ More recently: Learning representations (e.g. Deep Learning)

• Design of learning algorithms

• Performance evaluation (conflicting needs):

– error trends (loss function)

– training and test time

– flexible and easy to use

– easy to interpret (symbolic vs. numeric)

– easy to implement in hardware (GPU, etc.)

– fairness, privacy, . . .

6

An example: Naive Bayes/1

• Natural probabilistic viewpoint

• A1, . . . , Ad are attributes or features

• Y ∈ {0,1} is category or class

• Given input test pattern

x = (x1, . . . , xd)

classify x by assigning category

• Classification based on class y ∈ {0,1} maximizing posterior probability

Pr(Y = y |A1 = x1 . . . Ad = xd) =
Pr(A1 = x1 . . . Ad = xd |Y = y)× Pr(Y = y)

Pr(A1 = x1 . . . Ad = xd)

• Pr(A1 = x1 . . . Ad = xd |Y = y) is class-conditioned probability

• Pr(Y = y) is prior probability of class y

• Denominator is irrelevant (independent of y)

7

An example: Naive Bayes/2

• Naive Bayes assumption

• value of attributes A1, . . . , Ad independent given class Y

Pr(A1 = x1 . . . Ad = xd |Y = y) =
d∏

i=1

Pr(Ai = xi |Y = y)

• Naive Bayes classifier:
Classify x with class y ∈ {0,1} maximizing

d∏
i=1

Pr(Ai = xi |Y = y)× Pr(Y = y)

• Training phase: estimate (frequency counts) on training set

Pr(Y = y) y = 0,1

and

Pr(Ai = xi |Y = y) y = 0,1, i = 1 . . . d

8

An example: Naive Bayes/3

How to classify test pattern (A1 = m,A2 = q) ?

Pr(Y = 1) · Pr(A1 = m |Y = 1) · Pr(A2 = q |Y = 1) = 1
2
· 2

5
· 2

5
= 2

25

Pr(Y = 0) · Pr(A1 = m |Y = 0) · Pr(A2 = q |Y = 0) = 1
2
· 1

5
· 2

5
= 1

25

=⇒ On this training set Naive Bayes classifies (A1 = m,A2 = q) as 1

9

General Bayesian approach/1

More general ingredients for Bayes approach:

• Loss function ` : Y︸︷︷︸
class set

× Ŷ︸︷︷︸
decision set

→ R+

• x-Conditional risk for decision ŷ :

R(ŷ |x) =

∫
`(y, ŷ)

posterior︷ ︸︸ ︷
Pr(y|x) dy

where

Pr(y|x) =

class−conditioned︷ ︸︸ ︷
Pr(x|y) ·

prior︷ ︸︸ ︷
Pr(y)∫

Pr(x|y) Pr(y)dy
∝ Pr(x|y) Pr(y)

10

General Bayesian approach/2

• From training set, get estimate P̂r(x|y) of class-conditioned prob.
Often by parametric/simplifying assumptions, e.g.,

– Gaussian mean µ, covariance Σ

– Naive Bayes

Pr(x | y) =
d∏

i=1

Pr(xi | y)︸ ︷︷ ︸
1−dim. parametric family

• Replace Pr(x|y) by P̂r(x|y) and classify input pattern x:

Bayes(x) = argminy∈ŶR(ŷ |x)

• Maximum likelihood estimator when prior is uniform

• E.g. when Y = Ŷ = {1,2, . . . , c} and `(y, ŷ) = {ŷ 6= y} (0-1 loss)

R(ŷ |x) = 1− Pr(ŷ |x)

=⇒
Bayes(x) = argmaxŷ∈Ŷ Pr(ŷ |x)

11

Decision Trees/1
Non-metric method

Color?

Size? Size?Shape?

round

Size?

yellow
redgreen

thin mediumsmall smallbig

Grapefruit

big small

Watermelon Banana AppleApple

Lemon

Grape Taste?

sweet sour

Cherry Grape

m
ed

iu
m

level 0

level 1

level 2

level 3

root

FIGURE 8.1. Classification in a basic decision tree proceeds from top to bottom. The questions asked at
each node concern a particular property of the pattern, and the downward links correspond to the possible
values. Successive nodes are visited until a terminal or leaf node is reached, where the category label is read.
Note that the same question, Size?, appears in different places in the tree and that different questions can
have different numbers of branches. Moreover, different leaf nodes, shown in pink, can be labeled by the
same category (e.g., Apple). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

Encodes a function

{color, shape, taste, size} → {fruit}

Very interpretable representation !

12

Decision Trees/2

Further example (features need not be discrete)

x1< 0.69

 x2< 0.61

yes

ω1

no

yes no

x1 < 0.6

yes no

x2< 0.32

yes no

x1< 0.35

yes no

ω2

ω1

ω1

ω2

ω2

0.3
2

0.35 10.69

0.61

0.2
x1

ω1

ω1

ω1

ω2

ω2

ω2

x2

0.6

It’s a function

R2 → {ω1, ω2}

13

Decision Trees/3

Useful when:

• Features are discrete or discretized (finite no. of values)
– like Naive Bayes !

• Interpretable representation needed

• Training Set contains missing values (robustness)

14

Decision Trees/4: Construction/1

ID3, C4.5 (Quinlan): top-down construction

Q: “Which feature at the root?”
A: “The one that best discriminates Training Set”

Tag each child node with sub-Training Set

Q: “Which feature in each such child node ? ”
A: “The one that best discriminates corresponding sub-Training Set”

etc.

15

Decision Trees/4: Construction/2

Q: “Which feature at the root?”
A: “The one that (alone) best discriminates Training Set”

v1 vk

feature at root

Trs2

v2 ... vj ...

Trsj TrskTrs1

Q: Which feature at child node j ?
A: The one that (alone) best discriminates TrSj

• Best discrimination based on entropy reduction on sub-Training Set
c∑

i=1

pi log(1/pi)

pi = fraction of examples in sub-Training Set of class ωi

• Entropy reduction is Mutual Information between class label and feature
value

• Stop when sub-Training Set zero entropy and assign surviving class

16

Decision Trees/5: Post-Pruning

<=2 > 2

>4

x

y

2.6

32 x

y

4

<=3

x

>3

<=4

x

>2<=2

2

2.5

<=2 > 2

>4

x

y

<= 2.6

> 2.5

2.6

32 x

y

4

y

> 2.6

<= 2.5

y

<=3

x

>3

<=4

x

>2<=2

2

2.5

R1: x ≤ 2,y > 2.5,y > 2.6
→ o

R2: x ≤ 2,y > 2.5,y ≤ 2.6
→ o

R3: x ≤ 2,y ≤ 2.5
→ o

Pruning:

R1: x ≤ 2,y > 2.6
→ o

Further pruning:

R1: x ≤ 2 → o

Avoids overfitting: Usually performed on a hold-out set

17

k-Nearest Neighbor/1

• Unlike other (”eager”) methods k-NN does not build a model from Train-
ing Set (”lazy”)

• To classify pattern x, determines k closest points to x in Training Set

• Count no. ny of items in Training Set of class y and estimate

Pr(y|x) '
ny

k

(or weighted variants thereof)

• To classify go with the (weighted) majority

• Training not needed

• Classification time is linear in Training Set size if naively implemented and
sublinear if specific data-structures are used (e.g. kd-trees on Voronoi
tassellations)

18

k-Nearest Neighbor/2

 Green

 Red
 Black

New point

Pr(Green |) ?

• distance function of paramount importance (and it heavily depends on
scale factors), not easy to identify, especially for categorical features

• k is hyper-parameter usually selected by cross-validation:

– k too big: aggregating also points far from x

– k too small: too few aggregated points close to x to give rise to
reliable majority

19

k-Nearest Neighbor/3

• k-NN is simple non-parametric classifier (lacking other solutions . . .)

• Unlike Naive Bayes and Decision trees, k−NN is metric method
(closeness in distance ' semantic closeness)

• Being lazy, slow at test time

• Strongly dependent on distance function

• In the case of Euclidean distance

dist(x,x′) = ||x− x′||2 = (x · x) + (x′ · x′)− 2(x · x′)
classification depends on data only via scalar products

=⇒ can turn scalar products into more general products in (separable)
Hilbert Spaces (more general representations to incorporate invariants,
etc.)

20

Aggregation methods/1

Improved accuracy by combining classifiers trained on same Training Set

TrS = (x1, y1) . . . (xm, ym) ∈ Rd × {1 . . . c}

h1(x) = h1,T rS(x) ∈ {1 . . . c}
h2(x) = h2,T rS(x) ∈ {1 . . . c}
...
hT(x) = hT,TrS(x) ∈ {1 . . . c}

h(x) = combination(h1, h2, ..., hT) ∈ {1 . . . c}

Requires diversity across classifiers

Diversity through:

• Different subsets of TrS for each ht

• Different subset of features for each ht

• Decorrelation of ht during training

21

Aggregation methods/2: Bagging/1

Original Tr.Set 1 2 3 4 5 6 7 8

Training Set 1 2 7 8 3 7 6 3 1

Training Set 2 7 8 5 6 4 2 7 1

Training Set 3 3 6 2 7 5 6 2 2

Training Set 4 4 5 1 4 6 4 3 8

a d e

Feature set

a b

b c e

c d

a b c d e

Bagging = Boostrap Aggregating:

generates diversity via both

different subsets of TrS and

different subsets of features

Boostrap sample:
Given TrS, generates TrS’ by sampling uniformly with replacement from TrS

Input: TrS, T ∈ N
for t = 1 to T do

• TrSt = boostrap sample of TrS

• Ft = random subset of features

• ht = Learning-Algorithm(TrSt, Ft)

Output: Flat Majority over h1, h2, . . ., hT

22

Aggregation methods/2: Bagging/2

Useful when learner is unstable (small variations in TrS yield big changes in
learned classifier):

• True e.g. for decision trees (random forests)

• Not true e.g. for Naive Bayes

Experimentally, bagging substantially increase performance of unstable meth-
ods, but can degrate performance of stable ones

Hyperparameters (usually by cross-validation):

• Size of boostrap samples TrSt

• Size of subset of features Ft

23

Aggregation methods/3: Boosting/1

Main intuition: adaptive combination of pool of classifiers forced to be dif-
ferent during training

• Training:

– produces sequence of classifiers coming from simple base hypothesis
set

– Base hypothesis set: set of simple classifiers (e.g. linear or based on
few features only)

– each new classifier in sequence depends on previous one by focusing
on mistakes of old one

– training examples incorrectly classified is given higher weight

• Output:Weighted combination of classifiers so produced

24

Aggregation methods/4: Boosting/2

Adaboost

Given distribution P on TrS
ht ∈ base hypothesis set is
weak learner if accuracy
slightly better than random

Weak learner

Weak learner

Weak learner

Error εt of ht on TrS w.r.t. Pt:
total Pt-weight of
misclassified examples (xi, yi)

Weight αt high
if error εt small

25

Aggregation methods/4: Adaboost in action (binary)/1

Init

Weak learners = horizontal or vertical
 half-planes

Iteration 1

26

Aggregation methods/4: Adaboost in action (binary)/2

Iteration 3

Iteration 2

stored

stored

27

Aggregation methods/4: Adaboost in action (binary)/3

Final hypothesis (trained model):

28

Aggregation methods/5: Adaboost

Adaboost pros:

• General and flexible meta-algorithm, works in practice with any reason-
able weak learner

• Tends to outperform bagging in practice

• Only one hyperparameter (T = no. of iterations)

• Easy to implement

• Theoretical underpinning

Adaboost cons:

• Unclear how to incorporate prior knowledge in effective manner

• Caution needed on noisy data (strong focus on mistake can degrage
performance)

• Unclear how to select best base hypothesis set, needs unstable weak
learners (like bagging)

• Not easy to parallelize (unlike bagging)

29

Performance evaluation and workflow/1

• A dataset D at our disposal

• Training set TrS (to learn a model M = M(TrS))

• Test set TeS (to test learned model M), sometimes called holdout set

TrS ∩TeS = ∅ TrS ∪TeS = D

• Typical proportions 1/2 – 1/2 or 2/3 – 1/3

• Partitioning of D:

– random sampling

– determined by nature of data (e.g. TrS = past, TeS = future)

• (*) A modeling assumption: M from class of models, data have specific
representation

• Evaluation:

Accuracy = 1− Error =
no. of correct classifications on TeS

|TeS|

• If ”unhappy” =⇒ iterate back to (*)

30

Performance evaluation and workflow/2

However:

• Evaluation is multifaceted (conflicting needs: training time, test time,
robustness to noise or missing values, . . .)

• Better solutions than holdout set (cross-validation)

• Accuracy need not be reasonable statistical criterion

• More sublte: cannot iterate too many times . . .

• Benchmarking is very important

31

Performance evaluation and workflow/3

n-fold cross-validation (CV):

• D partitioned into n disjoint subsets Trs1, . . . ,TrSn of same size

• Use every subset as TeS and remaining n− 1 subsets as TrS

• Get n models M(TrS1), . . . ,M(TrSn) and n accuracy values

• Average accuracy over model is estimated accuracy of M(TrS)

• 5-fold CV and 10-fold CV used in practice

More effective than hold out set since accuracy refers to M(D), but also more
demanding computationally

Leave-one out cross-validation: n-fold CV with n = |D|

CV typically used to estimate hyperparameters

32

Performance evaluation and workflow/4

Accuracy inadequate when dealing with many classes or rare events

• Two unbalanced classes 1% and 99%: trivially achieve 99% accuracy by
never predicting rare class

• One-vs-rest: class of interest is positive class, rest is negative class

33

Performance evaluation and workflow/5

True positiveClassified positive

Precision = -------------

Recall = -------------

+

+

Confusion matrix

classified positive classified negative
true positive TP FN
true negative FP TN

• TP: no. of correct classifications among positive examples

• FN: no. incorrect classification among positive examples

• FP: no. incorrect classification among negative examples

• TN: no. of correct classifications among negative examples

Precision (P) =
TP

TP + FP
Recall (R) =

TP

TP + FN

• Precision: fraction of correctly classified
positive among the classified positive

• Recall: fraction of correctly classified
positive among the true positive

34

Performance evaluation and workflow/6

For instance

classified positive classified negative
true positive 1 99
true negative 0 1000

P = 100% R = 1%

• Precision and Recall only measure classification on positive class at hand

• Meaningless if taken in isolation:
high P achievable at low R and vice versa

F-measure: harmonic mean of P and R

F =
1

1
2P

+ 1
2R

=
2PR

P +R

Tends to be close to the smaller of the two: both P and R have to be large
to ensure large F

A more refined one: Area under the (ROC) curve [not covered]

35

Empirical risk minimization/1
Classification/regression tasks:

• Prediction models h mapping feature space X to label space Y

• Y = {1, . . . , c} [classification], Y = R [regression]

• Training set TrS = (X1, Y1), . . . , (XT , YT)

• Learning algorithm A maps training set TrS to prediction model

ATrS : X → Y

Goal: Evaluate risk of trained model A = ATrS w.r.t. given loss function

` : Y × Ŷ → R+

viewing TrS as statistical sample

Statistical risk:

RiskA = E(X,Y)

[
`
(
ATrS(X)︸ ︷︷ ︸
predicted by

trained model

, Y︸︷︷︸
value to be
predicted

)]
Training set TrS = (X1, Y1), . . . , (XT , YT) and test sample (X,Y) drawn i.i.d.
from the same fixed but unknown distribution over X × Y

36

Empirical risk minimization/2: A landmark method

Compare to best in comparison class:

• Given class of models (or hypothesis class)

H = {h : X → Y }
(e.g. class of linear functions)

• Want:
RiskA ≤ inf

h∈H
E(X,Y)

[
`
(
h(X), Y

)]
+ . . .

with high probability (over TrS)

Empirical risk minimizer:

ATrS = argminh∈H

empirical risk︷ ︸︸ ︷
1
T

T∑
t=1

`(h(Xt), Yt)

Regularized empirical risk minimizer:

ATrS = argminh∈H

empirical risk︷ ︸︸ ︷
1
T

T∑
t=1

`(h(Xt), Yt) +η

regularizer︷ ︸︸ ︷
Complexity(h)

37

Empirical risk minimization/3: Model selection

0

Bayes

Zero
error

Class of

models HBest in
class

Actual solution
(e.g. empirical risk
minimizer)

estimation

inherent

approximation

• Inherent error: Inner indistinguishability in process generating data

• Approximation error: ”Distance” of Bayes to best in class H

• Estimation error: ”Distance” of best in class to computed solution

Model selection: For given TrS, enlarging H gets reduced approximation error,

but increased estimation error, and vice versa

38

Empirical risk minimization/4: Computation

Empirical risk minimization (ERM):

• Generally hard to compute (local minima, NP hardness, . . .)
Hardness heavily depends on model class H and loss function `(·, ·)

• Many learning algs can be seen as approximate solutions to ERM

• Many of them are (stochastic) optimization algs (gradient descent-like)

39

Empirical risk minimization/5: Examples/1

• H is a class of linear functions

H = {w ∈ Rd : x→ w · x}

• Regularized ERM on TrS = (x1, y1), . . . , (xT , yT) ∈ Rd ×R:

argminw∈H
1

T

T∑
t=1

`(yt,w · xt) + η ||w||2

• `(y, ŷ) = `(y,w · x) (loss function in estimating y by w · x)

• `(y, ŷ) convex in ŷ

Stochastic Gradient Descent (SGD):

• Init: w0

• For t = 1,2, . . .

. Pick index It ∈ {1, . . . , T} at random

. wt+1 ← wt − η∇w`(yIt,w · xIt)|w=wt

40

Empirical risk minimization/5: Examples/2

yw x.

yw x.

w*

(.)

(.)
Perceptron algorithm:

• Labels y are binary ±1

• `(y,w · x) = max{0,−yw · x} is hinge loss

• Data are linearly separable
(∃w∗ s.t. ytw∗ · xt > 0 ∀t)

Logistic regression:

• Labels y are binary ±1

• `(y,w · x) = log(1 + exp(yw · x)) is logistic loss

• Pr(y = 1 | x) = exp(w∗·x)
exp(w∗·x)+1

logistic model: ERM = maximum likelihood estimator

41

Empirical risk minimization/5: Examples/3

H is class of multilayer feedforward networks

H = {x ∈ Rd → N(x,W1,W2, . . . ,Wk)}

Input
layer

Hidden
layers

Output
layer

5-3-3-1
feed-forward
architecture:

connections
are to next
layer only

3 x 3
weight
matrix W

3 x 1
weight
matrix W

5 x 3
weight
matrix W 2 31

x

oi

oi = f(
∑

j:j→iwj,ioj)

f is (non-linear)
activation function
E.g.: f sigmoid or ReLU

Want to learn parameters W1,W2, . . . ,Wk via SGD-like alg.

42

Empirical risk minimization/5: Examples/4

Training error measured by quadratic criterion (ERM with square loss):

1

T

T∑
t=1

(yt −N(xt,W1,W2, . . . ,Wk))2

Minimize via SGD over set of weights W1,W2, . . . ,Wk

Issue: local minima, but lot of recent literature on ReLU showing these min-
ima are not ”bad” (properly tuned SGD can escape them)

Back-propagation:

• Standard algorithm performing (stochastic) (sub-)gradient descent

• Uses chain rule of differentials to propagate updates forward and then
backward

• Main reason for its success is fast implementation

43

Clustering/1

Grouping objects: inferring similarities, compression, etc.

From: D. Baron, “clustering algorithms”, Nov. 2018

Different clustering tasks:

• Flat clustering vs. hierarchical clustering

• Unsupervised clustering vs. supervised clustering

44

Clustering/1

Grouping objects: inferring similarities, compression, outlier detection, density
estimation, etc.

Different clustering tasks:

• Flat clustering vs. hierarchical clustering

• Unsupervised clustering vs. supervised clustering

45

Clustering/2: k Means/1

Flat unsupervised clustering

Given

• Items x1, . . . ,xT ∈ Rd

• desired no. of clusters k

Cluster the T items into k clusters (w.r.t. Euclidean distance)

46

Clustering/2: k Means/2

k Means alg. [slides from D. Baron, clustering algorithms, Nov. 2018]

• Init: Selects randomly k points representing the cluster centroids

• Iterate:

– Alg. associates each item with single cluster based on distance from
cluster centroid

– Alg. re-computes cluster centroids based on items currently associ-
ated with it

47

Clustering/2: k Means/2

k Means alg: [slides from D. Baron, clustering algorithms, Nov. 2018]

• Init: Selects randomly k points representing the cluster centroids

• Iterate:

– Alg. associates each item with single cluster based on distance from
cluster centroid

– Alg. re-computes cluster centroids based on items currently associ-
ated with it

48

Clustering/2: k Means/2

k Means alg: [slides from D. Baron, clustering algorithms, Nov. 2018]

• Init: Selects randomly k points representing the cluster centroids

• Iterate:

– Alg. associates each item with single cluster based on distance from
cluster centroid

– Alg. re-computes cluster centroids based on items currently associ-
ated with it

49

Clustering/2: k Means/2

k Means alg: [slides from D. Baron, clustering algorithms, Nov. 2018]

• Init: Selects randomly k points representing the cluster centroids

• Iterate:

– Alg. associates each item with single cluster based on distance from
cluster centroid

– Alg. re-computes cluster centroids based on items currently associ-
ated with it

50

Clustering/2: k Means/2

k Means alg: [slides from D. Baron, clustering algorithms, Nov. 2018]

• Init: Selects randomly k points representing the cluster centroids

• Iterate:

– Alg. associates each item with single cluster based on distance from
cluster centroid

– Alg. re-computes cluster centroids based on items currently associ-
ated with it

51

Clustering/2: k Means/2

k Means alg: [slides from D. Baron, clustering algorithms, Nov. 2018]

• Init: Selects randomly k points representing the cluster centroids

• Iterate:

– Alg. associates each item with single cluster based on distance from
cluster centroid

– Alg. re-computes cluster centroids based on items currently associ-
ated with it

52

Clustering/2: k Means/3

k Means criterion:
Find partition C1, . . . , Ck of {x1, . . . ,xT} s.t.

fk =
k∑
i=1

∑
j∈Ci

|| xj︸︷︷︸
j-th item

− µi︸︷︷︸
centroid of Ci

||2

is mimimized

• NP-hard for given k (but trivial when k = T)

• Hyperparamenter k has to be selected based on exogenous information
Common pratice: identify elbow of fk as a function of k

• Approximation algorithms (e.g., k Means++) exist based on smarter init
step

• Other methods exist (e.g, Gaussian Mixture + EM)

53

Clustering/3: Hierarchical clustering

From: D. Baron, “clustering algorithms”, Nov. 2018

Given

• Items x1, . . . ,xT ∈ Rd

• distance function dist(x1,x2) over items

• distance function over sets of items (linkage function)

Build binary tree (dendrogram) whose leaves are the items, each cut of the
tree being a flat clustering of the T items

54

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018]

Init: one cluster per item (bottom up or agglomerative)

From: D. Baron, “clustering algorithms”, Nov. 2018

55

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018]

Merge the two closest points and iterate

56

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018]

Merge the two closest points/clusters and iterate

57

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018]

Merge the two closest points/clusters and iterate

58

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018]

Merge the two closest points/clusters and iterate

59

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018]

Merge the two closest points/clusters and iterate

60

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018]

Merge the two closest points/clusters and iterate

61

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018]

Merge the two closest points/clusters and iterate

62

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018]

Merge the two closest points/clusters and iterate

63

Clustering/3: Hierarchical clustering
[slides from D. Baron, clustering algorithms, Nov. 2018]

Single linkage:

dist(C1, C2) = min
x1∈C1,x2∈C2

dist(x1,x2)

64

Clustering/3: Hierarchical clustering
[slides from D. Baron, clustering algorithms, Nov. 2018]

Complete linkage:

dist(C1, C2) = max
x1∈C1,x2∈C2

dist(x1,x2)

65

Clustering/3: Hierarchical clustering

[slides from D. Baron, clustering algorithms, Nov. 2018][-10mm]

Average linkage:

dist(C1, C2) = dist(µ1, µ2)

A few more: median linkage, quantile linkage (more robust to outliers)

66

Clustering/3: Hierarchical clustering
[slides from D. Baron, clustering algorithms, Nov. 2018]

Hyperparameter: Flat clustering determined below given distance threshold
or given target no. k of clusters

67

Clustering/4: Supervised clustering

Clustering with extra source of information:

must link and/or cannot link constraints

Many ad hoc algorithms exist:

• variants of k Means

• or not . . .

68

Conclusions/1

• Machine Learning has very complex landscape of

– Problems: classification, regression, ranking, clustering, dimensional-
ity reduction, Sequential and Reinforcement Learning, . . .

– Methods: k-NN, Linear Discriminant Analysis, Decision Trees, Stochas-
tic Gradient Descent, Support Vector Machines, Boosting, k-means,
Variational Autoencoders, Deep Networks, Generative Adversarial Net-
works, Gaussian Process methods, . . .

– Tools: Weka, Tensorflow, Pytorch, Keras, Caffe, . . .

• Wide interaction with other fields (Statistical Inference, Control Theory,
Signal processing, Complex Networks, . . .)

69

Conclusions/2

Ask yourself: ”What is the goal of my investigation ?”

• Just prediction accuracy vs. higher-level knowledge

• Validating a hypothesis ?

• Is scalability an issue ?

Inspecting data first is of paramount importance (don’t be lazy . . .)

• How to incorporate prior knowledge (e.g. invariances)

• Preprocess data: normalize, re-center, augment, cluster data

• Pay attention to imbalanced, incomplete, noisy data

• Visualization techniques at this stage often important

• Carry out correct benchmarking: pay attention to bias in both data and
experimental practice

Claim: Better you know what you are using out of a software library . . .

70

Conclusions/3

Some textbooks:

• C. Bishop, Pattern Recognition and Machine Learning. Cambridge, UK:
Cambridge University Press, 2007.

• Duda, Hart, Stork, Pattern Classification, 2nd Ed., 2001.

• David J.C. MacKay, Information Theory, Inference, and Learning Algo-
rithms, Cambridge University Press, 2003.

• S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms, Cambridge University Press, 2014.

• I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, Cambridge MA:
MIT Press, 2016.

71

