

Deep Learning with MATLAB

Cagliari (Italy), 19 Sep. 2019

Giuseppe Ridinò Senior Application Engineer MathWorks Italy

© 2019 The MathWorks, Inc.

MATLAB & Simulink in Research

TNG Data Project and Jupyterlab Interface

0	www.tng-project.org/data/lab/	
	TNG	
	\$	

www.tn

JupyterLab is the In addition to the console, and com Computation is la

What is it. a

This service enab on a system at M storage means u Everything is fair Please note: this

access or resour data should be co

Request ac

Welcome! You

user@doma

Don't have an a

You need to log

Public Data Access Overview / Example Scripts

We provide example scripts for reading the data files of the Illustris[TNG] simulations. They are availa includes:

(i) reading a given particle type and/or data field from the snapshot files,

- (ii) reading only the particle subset from the snapshot corresponding to a halo or subhalo,
- (iii) extracting the full subtree or main progenitor branch from either SubLink or LHaloTree for a given su (iv) walking a tree to count the number of mergers,
- (v) reading the entire group catalog at one snapshot,

(vi) reading specific fields from the group catalog, or the entries for a single halo or subhalo.

We expect they will provide a useful starting point for writing any analysis task, and intend them as a that they can be quickly understood and extended.

Currently available are: **Python** (3.6+ recommended), **IDL** (8.0+ required), and **Matlab** (R2013a+ required) for that language.

Python IDL Matlab

In all cases, these scripts assume that you have downloaded local copies of the relevant files. Paths in to all read functions. The locations of group catalog files, snapshot files, and merger trees files are snapPath(), and treePath(). These can be modified as necessary to point to your local files, but it is all simulations.

- TNG100-1/
- TNG100-1/output/
 - group catalogs: TNG100-1/output/groups_099/fof_subhalo_tab_099.*.hdf5
 snapshots: TNG100-1/output/snapdir 099/snap 099.*.hdf5
- TNG100-1/postprocessing/
 - OffSetS: TNG100-1/postprocessing/offsets/offsets_*.hdf5
 - SubLink mergertree: TNG100-1/postprocessing/trees/SubLink/tree_extended.*.hdf5
 - other catalogs: TNG100-1/postprocessing/catalog_name/files*.hdf5

Project: <u>http://www.tng-project.org/</u> Jupyterlab: <u>tng-project.org/data/lab/</u> Scripts: <u>http://www.tng-</u> <u>project.org/data/docs/scripts/</u>

MATLAB Community Tools for Astronomy

https://www.mathworks.com/matlabcentral/fileexchange?sort=downloads_desc&q=astronomy

∲ MathWorks∘ File Exchange	Products Solutions Acad	Iemia Support Community Events A C A Market Market A Community Events A A A A A A A A A A A A A A A A A A A
MATLAB Central → Files Filter by Source ○ Community 48 Filter by Category	Authors My File Exchange Co 48 RESULTS	A MathWorks [®] Products Solutions Academia Support Community Events
Using MATLAB Language 4 Fundamentals Data Import and 1 Analysis Mathematics 2		"Fun Mon _{Colle} MATLAB Central → Files Authors My File Exchange Contribute About
Applications Science and Industry 32 Image Processing and 2 Computer Vision Data Analytics and 1 Machine Learning	AV integration of the second s	Prec Sprin Pers Colle Coll
Signal Processing and 2 Wireless Communications Filter by Type Functions 47		Zem ZER orthi Colle
Filter by Product Family		Rol Olde Solv NAS Dour Fund The MATLAB Astronomy & Astrophysics Toolbox (MAAT) is a collection of functions and classes for astronomy and astrophysics experimental and theoretical research.
	Satellite	Sat The toolbox is organized in several packages and sub packages that allow easy-to-navigate platform, as well as several

The toolbox is organized in several packages and sub packages that allow easy-to-navigate platform, as well as several "container" classes (e.g., image, catalog, time containers) with their own functions (methods), as well as static classes. The toolbox contains detailed documentation and examples, as well as a detailed help section for each function (see documentation).

LIGO: Spot 1st-Ever Gravitational Waves with MATLAB

MathWorks®

By Matthew Evans, MIT

system and instrumentation.

Overview

📣 Mat	thWorks∘	Products	Solutions	Academia	Support	Community	Events
Blogs	▶						
MATLAB Central - All MathWorks Blogs - Subscribe -							
Cleve's Corner: Cleve Moler on Mathematics and Computing Scientific computing, math & more							
Recent Posts 1 APR Biorhyt	Archive hms and Energy Vort	ices Near	Dark Posted B	Energy Cleve Mole	Gravitat r, April 1, 20	ional Wav	'es

Recent theoretical, observational and computational results establish the dawn of the universe affect the clock rate of silicon digital process

Contents

- Ed Plum
- LIGO
- LIGO Labs
- LIGO Gravitational Waves
- Dark Energy Gravitational Waves
- The signal
- The sound
- The spectrogram
- Expectations

Ed Plum more ¥

104

18

60

29

61

Article Blog post

NASA Build Kepler Pipeline tools with MATLAB

download: github.com/nasa/kepler-pipeline

 $\leftarrow \rightarrow \mathbf{C}$ () \Rightarrow \bigcirc itHub, Inc. [US] | https://github.com/nasa/kepler-pipeline

☆

Kepler Science Data Processing Pipeline

The Kepler telescope launched into orbit in March 2009, initiating NASA's first mission to discover Earth-size planets orbiting Sun-like stars. Kepler simultaneously collected data for ~160,000 target stars over its four-year mission, identifying over 4700 planet candidates, 2300 confirmed or validated planets, and 2100 eclipsing binaries. While Kepler was designed to discover exoplanets, the long term, ultra-high photometric precision measurements it achieved also make it a premier observational facility for stellar astrophysics, especially in the field of asteroseismology, and for variable stars, such as RR Lyrae stars. The Kepler Science Operations Center (SOC) was developed at NASA Ames Research Center to process the data acquired by Kepler starting with pixel-level calibrations all the way to identifying transiting planet signatures and subjecting them to a suite of diagnostic tests to establish or break confidence in their planetary nature. Detecting small, rocky planets transiting Sun-like stars presents a variety of daunting challenges, including achieving an unprecedented photometric precision of ~20 ppm on 6.5-hour timescales, supporting the science operations, management, and repeated reprocessing of the accumulating data stream.

The scientific objective of the Kepler Mission is to explore the structure and diversity of planetary systems. This is achieved by surveying a large sample of stars to:

- Determine the abundance of terrestrial and larger planets in or near the habitable zone of a wide variety of stars;
- Determine the distribution of sizes and shapes of the orbits of these planets;
- Estimate how many planets are in multiple-star systems;
- Determine the variety of orbit sizes and planet reflectivities, radii, masses and densities of short-period giant planets;
- Identify additional members of each discovered planetary system using other techniques; and
- Determine the properties of those stars that harbor planetary systems.

Agenda

Deep Learning Overview

Deep Learning in 6 Lines of MATLAB Code

Deep Learning with...

Images

Signals

Labeling Ground Truth Data

Working with Other Frameworks

Performance, Deployment, and Next Steps

Artificial Intelligence

 Development of computer systems to perform tasks that normally require human intelligence

Machine Learning

Machine Learning and Deep Learning

Machine Learning and Deep Learning

Machine Learning and Deep Learning

What is Deep Learning?

Deep Learning

- Subset of machine learning with automatic feature extraction
 - Learns features and tasks directly from data
 - More Data = better model

Deep Learning uses a neural network architecture

Signal

Text

Deep Learning datatypes

Image

Numeric

Example 1: Detection and localization using deep learning

YOLO v2 (You Only Look Once)

Semantic Segmentation using SegNet

Example 2: Analyzing signal data using deep learning

File	ime Scope Tools View Playba	ck Help					1 × 1
	I • 4 🛛 🗠						2
15							annel 1 annel 2 annel 3
							t.c
= 10 ;							
n s ⁻ 2) u							t
celeration (r)						
-5	5						
-10		Figure 2: Acquisitio	Pause	- 🗆			
- 15		Actual: Lay Estimated:	ing Laying				
-	0 0	0.5	1 Time (secs)	1.5	2		2.5
Process	sing				Offse	t=31.317 (mins)	T=1879.04

Signal Classification using LSTMs

Speech Recognition using CNNs

Machine Learning vs Deep Learning

Deep learning performs end-to-end learning by learning features, representations and tasks directly from images, text and sound

Deep learning algorithms also scale with data – traditional machine learning saturates

Deep Learning workflow

Agenda

Deep Learning Overview

Deep Learning in 6 Lines of MATLAB Code

Deep Learning with...

Images

Signals

Labeling Ground Truth Data

Working with Other Frameworks

Performance, Deployment, and Next Steps

Deep Learning in 6 lines of MATLAB code

Using Apps for designing Deep Learning networks

Different Neural Networks for Different Data

Machine Learning or LSTM

LSTM or CNN

Convolutional Neural Networks (CNN)

CNN Visualization methods

Layer Activations

Class Activations

DeepDream Images

Another network for signals - LSTM

- LSTM = Long Short Term Memory (Networks)
 - Signal, text, time-series data
 - Use previous data to predict new information
- I live in France. I speak ______.

Combining convolution and recurrent layers

Learn spatial and temporal features simultaneously

Agenda

Deep Learning Overview

Deep Learning in 6 Lines of MATLAB Code

	Deep Learning with				
_	Images	Signals			

Labeling Ground Truth Data

Working with Other Frameworks

Performance, Deployment, and Next Steps

Agenda

Deep Learning Overview

Deep Learning in 6 Lines of MATLAB Code

Deep Learning with					
Images	Signals				

Labeling Ground Truth Data

Working with Other Frameworks

Performance, Deployment, and Next Steps

Two approaches for Deep Learning

1. Train a Deep Neural Network from Scratch

2. Fine-tune a pre-trained model (transfer learning)

Semantic Segmentation

CamVid Dataset

- 1. Segmentation and Recognition Using Structure from Motion Point Clouds, ECCV 2008
- 2. Semantic Object Classes in Video: A High-Definition Ground Truth Database ,Pattern Recognition Letters

Semantic Segmentation Network

Semantic Segmentation Network

Example: Semantic Segmentation for Free Road Detection

1. Use CamVid dataset

- Download the dataset (images and labels)
- Resize images to fit the input sizes of our neural network

2. Balance classes using class weighting

Ideally, all classes would have an equal number of observations.

However, the classes in CamVid are imbalanced.

We use the pixel label counts and calculate the median frequency class weights.

3. Split dataset

- Trains the model
- Computer "learns" from this data

 Checks accuracy of model during training

- Tests model accuracy
- Not used until validation accuracy is good

4. Define network

91x1 Layer array with layers:

. . .

1	'inputImage'	Image Input	360x480x3 images with 'zerocente
2	'conv1 1'	Convolution	64 3x3x3 convolutions with strid
3	'bn conv1 1'	Batch Normalization	Batch normalization
4	'relu1 1'	ReLU	ReLU
5	'conv1_2'	Convolution	64 3x3x64 convolutions with stri
6	'bn_conv1_2'	Batch Normalization	Batch normalization
7	'relu1 2'	ReLU	ReLU
8	'pool1 <mark>'</mark>	Max Pooling	2x2 max pooling with stride [2
9	'conv2_1'	Convolution	128 3x3x64 convolutions with str
10	'bn_conv2_1'	Batch Normalization	Batch normalization
11	'relu2 1'	ReLU	ReLU

```
50x480x3 images with 'zerocenter' normalization

4 3x3x3 convolutions with stride [1 1] and padding [1 1 1 1]

atch normalization

ELU

4 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

atch normalization

ELU

42 max pooling with stride [2 2] and padding [0 0 0 0]

43 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

atch normalization

ELU

44 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]

50 3x3x64 convolutions with stride [1 1] and padding [1 1 1 1]
```

- Use segnetLayers to create a SegNet network initialized from a pre-trained VGG-16.
- Another option: Deeplab v3+ network with weights initialized from a pre-trained Resnet-18.

Last 9 layers: the last one provides also the **Class Weighting**

5. Train network

Useful tools for Semantic Segmentation

- Automatically create network structures
 - Using **segnetLayers** and **fcnLayers**
- Handle pixel labels
 - Using the pixelLabelImageDatastore and
 pixelLabelDatastore
- Evaluate network performance
 - Using evaluateSemanticSegmentation
- Examples and tutorials to learn concepts

Actual	Expecter	d			
Difference	11x2 table				
	1 classes	2 iou			
971	1 "Sky"	0.9266			
and the second se	2 "Building"		1	Tell	MaanBECaana
	3 "Pole"		Accuracy	100	MeanBrScore
	4 "Road"				
la construction de la construcción de la construcci	5 "Pavement"	Sky	0.93544	0.89279	0.88239
	5 Pavement	Building	0.79978	0.75543	0.59861
		Pole	0.73166	0.18361	0.51426
		Road	0.93644	0.90663	0.7086
		Pavement	0.90624	0.72932	0.70585
		Tree	0.86587	0.73694	0.67097
		SignSymbol	0.76118	0.35339	0.44175
		Fence	0.83258	0.49648	0.50265
		Car	0.90961	0.75263	0.64837
		Pedestrian	0.83751	0.35409	0.46796
		Bicyclist	0.84156	0.5472	0.46933
Semantic Segmentation Basics	R2018a	L			
Segmentation is essential for image analysis tasks. Semantic segment associating each pixel of an image with a class label, (such as flower, pixel) as the second s	ation describes the process of person, road, sky, ocean, or car)		For Just Grant Just Hard Just Hard Hard Hard Hard Hard Hard Hard Hard		
Autonomous driving Industrial Immediate		Multispectral Ima	ages Using		

Deep Learning

Train a U-Net convolutional neural

network to perform semantic

segmentation of a multispectral

image with seven channels; three

Classification of terrain visible in satellite imagery
 Medical imaging analysis

Train a Semantic Segmentation Network The steps for training a semantic segmentation network are as follows:

1 Analyze Training Data for Semantic Segmentation

2. Create a Semantic Segmentation Network

3. Train A Semantic Segmentation Network A Evaluate and inspect the results of semantic commentation

Agenda

Deep Learning Overview

Deep Learning in 6 Lines of MATLAB Code

Deep Learning with				
Images	Signals			

Labeling Ground Truth Data

Working with Other Frameworks

Performance, Deployment, and Next Steps

Common network architectures - signal processing

Long Short Term Memory (LSTM) Networks

Example: Speech Recognition

1. Create Datastore

- Datastore creates reference for data
- Do not have to load in all objects into memory


```
datafolder = fullfile(tempdir,'speech_commands_v0.01');
```

```
addpath(fullfile(matlabroot,'toolbox','audio','audiodemos'))
ads = audioexample.Datastore(datafolder, ...
'IncludeSubfolders',true, ...
'FileExtensions','.wav', ...
'LabelSource','foldernames', ...
'ReadMethod','File')
```


2. Compute speech spectrograms

3. Split datastores

- Trains the model
- Computer "learns" from this data

 Checks accuracy of model during training

- Tests model accuracy
- Not used until validation accuracy is good

4. Define architecture and parameters

layers = [

imageInputLayer(imageSize)

convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,'Stride',2)

convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,'Stride',2,'Padding',[0,1])

dropoutLayer(dropoutProb)
convolution2dLayer(3,64,'Padding','same')
batchNormalizationLayer
reluLayer

dropoutLayer(dropoutProb)

convolution2dLayer(3,64,'Padding','same')
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,'Stride',2,'Padding',[0,1])

dropoutLayer(dropoutProb)
convolution2dLayer(3,64,'Padding','same')
batchNormalizationLayer
reluLayer

dropoutLayer(dropoutProb)
convolution2dLayer(3,64,'Padding','same')
batchNormalizationLayer
reluLayer

maxPooling2dLayer([1 13])

fullyConnectedLayer(numClasses)
softmaxLayer
weightedCrossEntropyLayer(classNames,classWeights)];

miniBatchSize = 128; validationFrequency = floor(numel(YTrain)/miniBatchSize); options = trainingOptions('adam', ... 'InitialLearnRate',5e-4, ... 'MaxEpochs',25, ... 'MaxEpochs',25, ... 'MiniBatchSize',miniBatchSize, ... 'Shuffle','every-epoch', ... 'Shuffle','every-epoch', ... 'Plots','training-progress', ... 'Verbose',false, ... 'Verbose',false, ... 'ValidationData',{XValidation,YValidation}, ... 'ValidationData',{XValidationFrequency, ... 'ValidationFrequency',validationFrequency, ... 'ValidationPatience',Inf, ... 'LearnRateSchedule','piecewise', ... 'LearnRateDropFactor',0.1, ...

'LearnRateDropPeriod',20);

Model Parameters

Neural Network Architecture

5. Train network

Training is an iterative process

```
miniBatchSize = 128;
validationFrequency = floor(numel(YTrain)/miniBatchSize);
options = trainingOptions('adam', ...
    'InitialLearnRate',5e-4, ....
    'MaxEpochs',25, ...
    'MiniBatchSize', miniBatchSize, ...
    'Shuffle', 'every-epoch', ...
    'Plots', 'training-progress', ...
    'Verbose', false, ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency', validationFrequency, ...
    'ValidationPatience', Inf, ....
    'LearnRateSchedule', 'piecewise', ...
    'LearnRateDropFactor',0.1, ...
    'LearnRateDropPeriod',20);
```

Parameters adjusted according to performance

Agenda

Deep Learning Overview

Deep Learning in 6 Lines of MATLAB Code

Deep Learning with...

Images

Signals

Labeling Ground Truth Data

Working with Other Frameworks

Performance, Deployment, and Next Steps

Labeling for deep learning is repetitive, tedious, and time-consuming...

but necessary

Ground truth labeling for images and video

"How do I *label* my data?"

> App for Ground Truth Labeling

Label regions and pixels for semantic segmentation

Ground truth labeling for signals and audio

"How do I *label* my data?"

App for Signal Analysis and Labeling Label signal waveforms,

attributes, and

samples for machine

learning

MATLAB Apps help you speed up labeling work

For labeling **images** and **videos**:

- 1. Image Labeler (Computer Vision Toolbox)
 - https://www.mathworks.com/help/vision/ref/imagelabeler-app.html
- 2. Video Labeler (Computer Vision Toolbox)
 - https://www.mathworks.com/help/vision/ref/videolabeler-app.html

- **3. Ground Truth Labeler** (Automated Driving Toolbox)
 - https://www.mathworks.com/help/driving/ref/groundtruthlabeler-app.html

How to choose the correct app for your project?

- https://www.mathworks.com/help/vision/ug/choose-a-labeling-app.html

MATLAB Apps help you speed up labeling work

For labeling **signals** and **audio**:

1. Audio Labeler

(Audio Toolbox)

https://www.mathworks.com/help/audio/ug/au dio-labeler-walkthrough.html

2. Signal Labeler

(Signal Processing Toolbox)

https://www.mathworks.com/help/signal/ref/signallabeler.html

Agenda

Deep Learning Overview

Deep Learning in 6 Lines of MATLAB Code

Deep Learning with...

Images

Signals

Labeling Ground Truth Data

Working with Other Frameworks

Performance, Deployment, and Next Steps

Two ways to work with TensorFlow and PyTorch

Co-execution (Python and C++)

Three use cases for model exchange

- 1. Enable teams to use different frameworks and tools
- 2. Access to code generation and other downstream tools in MATLAB
- 3. MATLAB users gain access to models in research/DL ecosystem

Model exchange with MATLAB

Open Neural Network Exchange

mxnet

M

SSas

LibSVM

BITMAIN

Windows

ONNX – Industry Standard for Model Exchange

developed and supported by a community of partners.

Cognitive Toolkit

MATLAB'

dmic XGBoost

Transfer Learning with Pretrained Models

Import & Export Models Between Frameworks

More comprehensive list here: <u>https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html</u>

Agenda

Deep Learning Overview

Deep Learning in 6 Lines of MATLAB Code

Deep Learning with...

Images

Signals

Labeling Ground Truth Data

Working with Other Frameworks

Performance, Deployment, and Next Steps

Training Performance and Scalability

Deep Learning on CPU, GPU, Multi-GPU and Clusters

HOW TO TARGET?

Single CPU

Single CPU Single GPU

Single CPU, Multiple GPUs

On-prem server with GPUs

Cloud GPUs

MATLAB parallel capabilities for cloud are evolving

			AMAZON WEB SERVICES	HOSTING PROVIDER	BUILD YOUR OWN	
Option	Parallel Computing Toolbox		MATLAB Parallel Server (formally called MDCS)			
	Desktop	Custom Cloud Reference Architecture	User-managed Cloud Cloud Center	Pre-configured Cloud Hosting Providers	Custom Cloud Reference Architecture	On Premise
Description	Explicit desktop scaling	Explicit desktop scaling	Preconfigured clusters in Amazon Web Services	Cloud solutions from MathWorks partners	Custom infrastructure for AWS, Azure, and others	Scale to clusters in your organization
When to use	Prototyping, small scaling	Data in cloud, access high-end machines, especially with GPUs	User-centric workflows, small studies	Managed environments with operating expense rather than capital expense	Internally-managed environments with operating expense rather than capital expense	Traditional scaling on assets you manage at your facilities
Maximum workers	Physical cores in machine	Physical cores in machine	1024 per cluster	Defined by Hosting Provider	No limit	Physical cores in cluster
License Options	NetworkOnline	 Online Network (requires support) 	Online only	NetworkOnline	 Online Network (requires support) 	NetworkOnline

http://www.mathworks.com/programs/mdcs-cloud.html

Cloud Reference Architecture: MATLAB & Simulink

Reference Architecture: MATLAB Distributed Computing Server

Use cases:

- Parameter sweeps
- Monte Carlo runs
- Optimization
- Distributed array calculations

NVIDIA NGC & DGX Supports MATLAB for Deep Learning

- GPU-accelerated MATLAB Docker container for deep learning
 - Leverage multiple GPUs on NVIDIA DGX Systems and in the Cloud
 - Cloud providers include: AWS, Azure, Google, Oracle, and Alibaba
- NVIDIA DGX System / Station
 - Interconnects 4/8/16 Volta GPUs in one box
- Containers available for R2018a through R2019a
 - New Docker container with every major release (a/b)
- Download MATLAB container from NGC Registry
 - <u>https://ngc.nvidia.com/registry/partners-matlab</u>

Inference Performance and Deployment

Deployment process

Deploying Deep Learning models for inference

With GPU Coder, MATLAB is fast

GPU Coder is faster than TensorFlow, MXNet and PyTorch

MXNet

GPU Coder

Intel® Xeon® CPU 3.6 GHz - NVIDIA libraries: CUDA10 - cuDNN 7 - Frameworks: TensorFlow 1.13.0, MXNet 1.4.0 PyTorch 1.0.0

Semantic Segmentation speedup

Running in MATLAB

Generated Code from GPU Coder

Blog: Deep Learning

Introduction to Deep Learning

MathWorks® Products Solutions Academia Support Community Events

Video and Webinar Series

Videos Home Search

📞 Contact sales 🛛 🌲 Trial software

Introduction to Deep Learning

Watch this series of MATLAB[®] Tech Talks to explore key deep learning concepts. Learn to identify when to use deep learning, discover what approaches are suitable for your application, and explore some of the challenges you might encounter.

What Is Deep Learning?

Explore deep learning fundamentals in this MATLAB Tech Talk. You'll learn why deep learning has become so popular, and you'll walk through 3 concepts: what deep learning is, how it is used in the real world, and how you can get started.

What Are Convolutional Neural Networks?

Explore the basics of convolutional neural networks (also called CNNs or ConvNets) in this MATLAB Tech Talk. You'll learn 3 concepts: local receptive fields, shared weights & biases, and activation & pooling. You'll also learn 3 ways to train CNNs.

Machine Learning vs. Deep Learning

Learn about the differences between deep learning and machine learning in this MATLAB Tech Talk. Walk through several examples, and learn about how decide which method to use.

Related Resources

- Deep Learning with MATLAB (5 Videos)
- Deep Learning with MATLAB (ebook)

http://www.mathworks.com/videos/series/introduction-to-deep-learning.html

Deep Learning with MATLAB

Deep Learning with MATLAB

Deep learning often seems inaccessible to non-experts. In this video series, you'll see how MATLAB[®] makes it easy for engineers and scientists to apply deep learning to their problems. Watch the short videos, explore the well-documented code, and read the detailed blog posts to quickly understand deep learning.

Tutorials

Training a Neural Network from Scratch with MATLAB Use MATLAB for configuring, training, and evaluating a convolutional neural network for image classification.

Quick Start

Tutorials

Quick Start

Deep Learning in 11 Lines of MATLAB Code

See how to use MATLAB, a simple webcam, and a deep neural network to identify objects in your surroundings. This demo uses AlexNet, a pretrained deep convolutional neural network that has been trained on over a million images.

Transfer Learning with Neural Networks in MATLAB Use MATLAB for fine-tuning a pretrained convolutional neural network for image classification.

Using Feature Extraction with Neural Networks in MATLAB Use MATLAB for extracting features with a pretrained convolutional neural network and to train a support vector machine classifier for image classification.

⊙ 3:59

Transfer Learning in 10 Lines of MATLAB Code Learn how to use transfer learning in MATLAB to re-train deep learning networks created by experts for your own data or task.

Related Resources

- Introduction to Deep Learning (3 Videos)
- Deep Learning with MATLAB (ebook)

http://www.mathworks.com/videos/series/deep-learning-with-MATLAB.html

Deep Learning Onramp

This free, two-hour deep learning tutorial provides an interactive introduction to practical deep learning methods. You will learn to use deep learning techniques in MATLAB[®] for image recognition.

Prerequisites: MATLAB Onramp or basic knowledge of MATLAB

Launch the course

Access to MATLAB through your web browser Engaging video tutorials

Hands-on exercises with

automated assessments and

feedback

lassans

Lessons available in English and Japanese

http://www.mathworks.com/learn/tutorials/deep-learning-onramp.html

Thank you!

