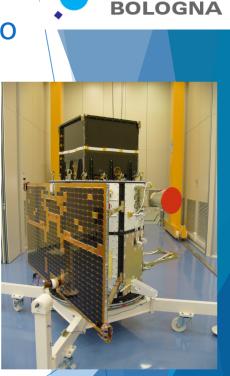


Deep Learning Method for AGILE-GRID GRB Detection

N. Parmiggiani, A. Bulgarelli, A. Giuliani, F. Longo, F. Verrecchia, V. Fioretti, M. Tavani, D. Beneventano

AGILE, Astro Rivelatore a Immagini LEggero

- AGILE is an Italian Space Mission funded by INAF, ASI and INFN
- AGILE is observing the Gamma-Ray sky since its launch on 23 April 2007
- AGILE has on board three instruments: Gamma Ray Imaging Detector (GRID), SuperAGILE and Mini-Calorimeter
- The instrument used for this work is the GRID instrument, with an energy range between 100MeV and 10 GeV



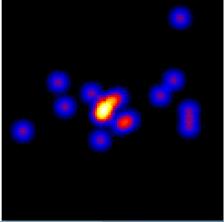
INAF OAS

Gamma Ray Burst

- GRBs are extremely energetic explosions that occur in distant galaxies (Billions of light years).
- They are the brightest electromagnetic events known in our universe
- GRBs have a collimated emission of energy into a narrow jet, to see them the GRB needs to be pointed in the observer direction
- The prompt energy emission usually has a duration in the scale of seconds.

AGILE and GRB

- > AGILE is able to detect GRB using all its three instruments
- This work is focused on the GRID instrument that produces maps of the sky called counts maps
- The count map show the gamma-ray photons detected by the GRID instrument, binned inside the image pixels
- After a Gaussian Smoothing the image is clearer
- The GRID can detect GRB in its energy range, we developed a new method to improve the detection performances



GRB and Multi-messenger era

- The GRB detections are shared with the Scientific Community through the Gamma-Ray Coordinates network (GCN)
- Using this network all astrophysical missions share the coordinate of detected GRB to allow other mission to point their instrument and follow the GRB event
- The GCN network is used to exchange informations helpful to find a relationship between Gravitational Waves and GRBs
- With this new method we want to detect short GRBs as counterpart of Gravitational Wave events

AGILE and Multi-Messenger era

- AGILE sends to the Community an alert when a new GRB is detected from MCAL data with a significance over a threshold
- AGILE also receives alerts from external instruments to search inside the AGILE instruments data the same event
- The AGILE Team developed a pipeline for the Real-Time Analysis and response to these alerts
- This new method for the GRB detection will be implemented as an analysis tool of the AGILE Real-Time pipeline

Why Deep Learning?

- Standard methods to evaluate GRB detection uses the list of photons selected in a radius from the GRB position
- We developed this new method to detect GRB directly from the counts maps, analyzed like an image composed of a pixels matrix
- We decided to implement a Convolutional Neural Network to classify maps searching for maps with a GRB inside
- The CNN is the class of Deep Learning used to classify images, it has different convolutional layer

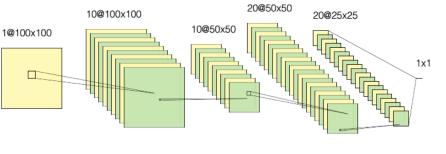
CNN Implementation

Convolution

Dense Layer 1024

OAS

BOLOGNA



We implemented the CNN with convolution and max-polling layers.

Max-Poll

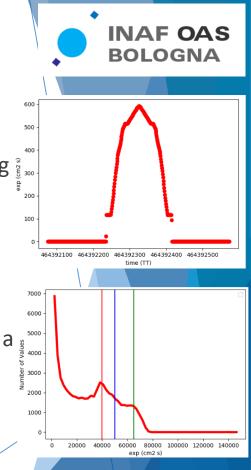
Convolution

Max-Pol

- Starting from an image of 100x100 pixels we got at the end of the convolution layers a dense layer of 1024 values.
- After a dropout operation the CNN output is a vector of two values ranging between 0 and 1, this is the result

AGILE Observing Pattern

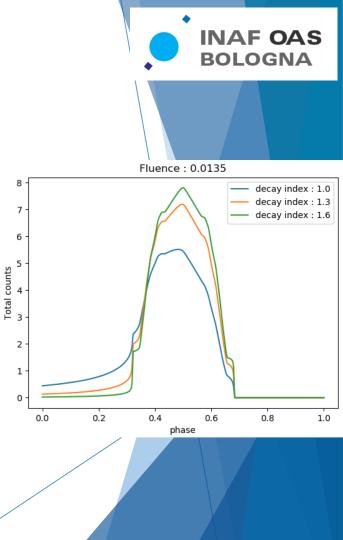
- Since November 2009 AGILE is operating in "spinning-mode", the satellite axis sweeps a 360° circle in the sky. This observing mode provides an unique capability for transient discoveries
- First of all we have studied the AGILE complex observing pattern during the satellite spins.
- We calculated the exposure of a fixed point in the sky during a spin to find the temporal variability. We also calculated the mean exposure value during a year for 200s integration
- From the first analysis we decided to search GRB in 200s counts maps



GRB Model

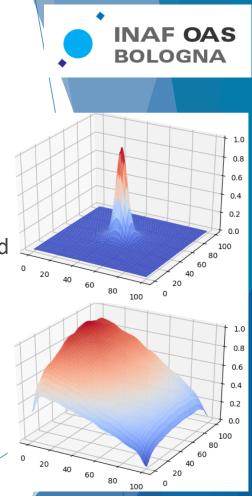
- We started from the Fermi-LAT GRB catalog^[1] to define model of the GRB that AGILE-GRID can detect
- From this catalog we calculated a mean GRB fluence that can be detected by AGILE
- Using exposure and background level we calculated the number of photons that we expect from a GRB
- We used this number of photons to simulate the datasets for the CNN training and testing

[1] M. Ajello et al. A Decade of Gamma-Ray Bursts Observed by Fermi -LAT, ApJ, 878, 1 (2019)

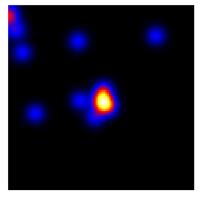


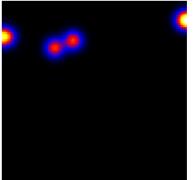
Datasets Creation

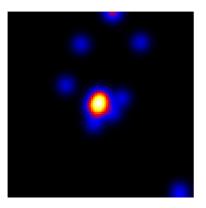
- In order to train and test the CNN we created two datasets, composed of 200 000 labeled simulated counts maps
- These datasets contain half of maps with just background and other half with a simulated GRB in the center of the map
- The simulated GRBs are centered because the context of this work is a pipeline for the analysis of external alert were time and position are known in advance
- We calculated histograms to check the datasets

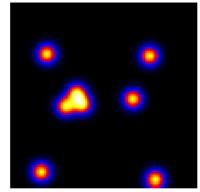


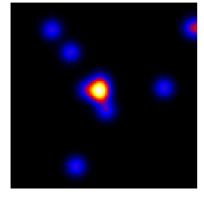
AGILE-GRID Simulated Maps

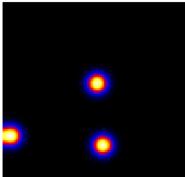






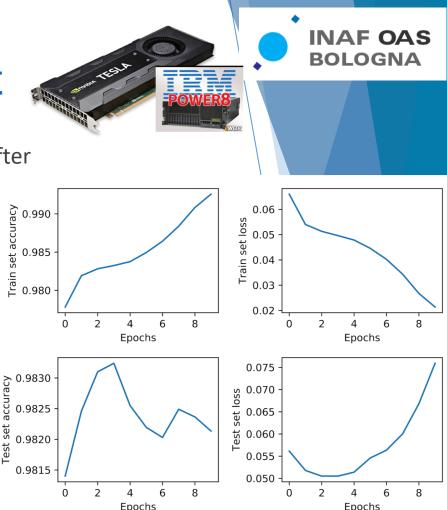






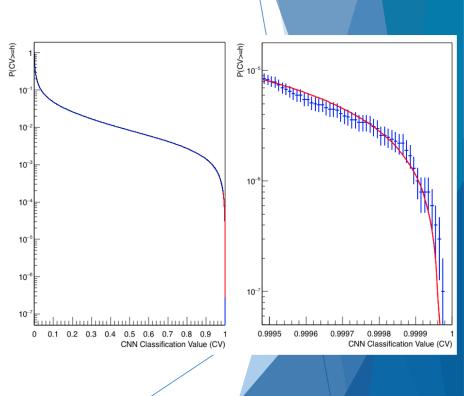
CNN Training and Test

- The CNN was trained for 10 epochs but after 3 epochs the accuracy decreases so we stopped the training on the third epochs group
- The Accuracy reached on the test set is about 0.982 %
- Now we need to find the statistical significance of this CNN classification because we want to minimize the false positive



P-Value distribution

- The CNN will be used inside the AGILE pipeline for external alert, for this reason the CNN will work in different observing conditions
- We defined three different background and three different exposure levels and for each combination of them we calculated the p-value distribution of the CNN output values evaluating 10 millions of background maps



INAF OAS BOLOGNA

P-Value and Statistical Significance

			$g_{iso} = 5$			$g_{iso} = 10$			$g_{iso} = 15$	
σ	p-values	exp = 40	exp = 50	exp = 65	exp = 40	exp = 50	exp = 65	exp = 40	exp = 50	exp = 65
3	1.35×10^{-3}	2.9×10^{-1}	2.7×10^{-1}	2.5×10^{-1}	2.1×10^{-1}	1.9×10^{-1}	1.3×10^{-1}	$1.5 imes 10^{-1}$	$9.6 imes 10^{-2}$	4.8×10^{-2}
3.5	2.32×10^{-4}	5.8×10^{-2}	5.8×10^{-2}	5.0×10^{-2}	4.2×10^{-2}	3.4×10^{-2}	2.0×10^{-2}	2.4×10^{-2}	1.4×10^{-2}	6.0×10^{-3}
4	3.17×10^{-5}	1.6×10^{-2}	1.3×10^{-2}	9.6×10^{-3}	6.5×10^{-3}	5.5×10^{-3}	2.9×10^{-3}	3.1×10^{-3}	2.0×10^{-3}	7.7×10^{-4}
4.5	3.40×10^{-6}	2.7×10^{-3}	2.4×10^{-3}	1.6×10^{-3}	1.3×10^{-3}	$7.7 imes 10^{-4}$	3.3×10^{-4}	4.3×10^{-4}	2.6×10^{-4}	1.0×10^{-4}
5	2.86×10^{-7}	1.1×10^{-3}	5.0×10^{-4}	2.3×10^{-4}	3.0×10^{-4}	1.8×10^{-4}	6.0×10^{-5}	8.0×10^{-5}	3.0×10^{-5}	1.0×10^{-5}

To define the statistical significance of a GRB detection with the CNN we used the p-value thresholds for the different sigma level to find the thresholds of the CNN output value in the different observing conditions.

Real GRB Evaluation

We tested the CNN on real AGILE data simulating the external alert from GRBs catalogs: Fermi-LAT^[1], Fermi-GBM^[2] and Swift-BAT^[3]. A total of 595 GRBs are selected from catalogs OAS

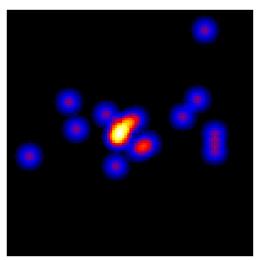
BOLOGNA

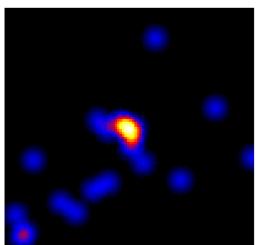
- For each GRB of these catalogs we created the AGILE-GRID counts maps with an integration time of 200s and with the trigger time and position of the catalogs
- We classified these counts maps with the CNN detecting 20 counterparts with sigma >3 , 10 of them with sigma >=4 and 15 of them are new announce by AGILE

[1] M. Ajello et al. A Decade of Gamma-Ray Bursts Observed by Fermi -LAT, ApJ, 878, 1 (2019)
[2] Swift-BAT Online Catalog https://swift.gsfc.nasa.gov/archive/grb_table/
[3] Fermi GBM Burst Catalog https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html

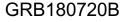
AGILE-GRID GRB counts maps

GRB100724B

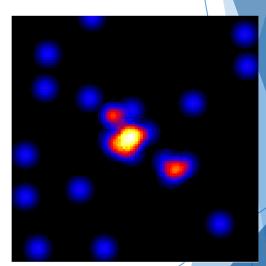




GRB131108A



INAF OAS BOLOGNA



Conclusion

- We developed this new CNN method to detect a GRB inside the AGILE-GRID counts maps when an external alert is received
- We trained and tested the CNN network creating datasets of simulated maps, we also calculated the p-value distributions
- Using Fermi and Swift catalogs we evaluated real GRB and the CNN detects 20 GRB, 15 of which are a new announce
- We compared the results of this method with results of the standard method used by AGILE Team founding a significant improvement in this specific context of an automated pipeline. A publication is in progress

