Radio Surveys Data Analysis in the Visibility Domain

Marzia Rivi marzia.rivi@inaf.it

INAF Institute of Radioastronomy

INAF Science Archives & the Big Data Challenge Rome, June 18, 2019

< 4[™] >

- Radio data
- Use case: Radio Weak Lensing Surveys
- Image vs Visibilities
- HPC analysis methods in the Visibility Domain
- Data Challenge \rightarrow RWL pipeline
- Conclusions

Radio Data

Radio interferometers produce **complex visibilities** sampled at discrete locations in the Fourier domain (uv plane)

sampling function (uv coverage): $S(u, v) = \sum_i \delta(u - u_i, v - v_i)$

complex raw visibilities

$$V(u,v) \sim \int \int I(I,m) e^{-2\pi i(uI+vm)} dI dm$$

 \downarrow calibration, gridding, FFT

dirty image

$$I^{D} = \int \int S(u, v) V(u, v) e^{2\pi i (ul + vm)} du dv = I * PSF$$

 \downarrow iterative PSF deconvolution

clean image

New generation of radio interferometers, such as SKA, provide:

- high resolution (antennas distributed over a very large area)
- high sensitivity

for radio continuum surveys

MEANING

- observation of large number density of faint extended sources
- big data volume not supported by current tools
- traditional imaging algorithms cannot be applied anymore

Square Kilometre Array (SKA) Mid-Frequency

SKA-MID South Africa 350 MHz - 14 GHz

Phase 1: 64 MeerKAT 13.5m + 133 SKA 15m dishes max baseline 150 km, resolution 0.3 arcsec $\sim 3 \text{ gal/arcmin}^2 \rightarrow 10^4$ sources in 1 deg² FoV!

Phase 2: \sim 2000 dishes, \sim 10 gal/arcmin²

For a large sample of background galaxies: $\gamma \sim \langle \mathbf{e} \rangle$.

M. Rivi (INAF-IRA)

Radio data analysis in the visibility domain

Rome, June 18, 2019

Use Case: Radio Weak Lensing

- **Higher redshift** source distribution (beyond LSST and Euclid).
- Redshift measurement from detection of HI 21 cm lines.

M. Brown et al., SKA Science Book Vol.2, 2015

• Well-known and deterministic knowledge of PSF (from antennae positions) solves one of the biggest systematic errors.

Use Case: Radio Weak Lensing

- Other measurements may provide estimate of galaxy's intrinsic orientation allowing **mitigation of intrinsic alignments**:
 - radio polarization (Brown & Battye 2011, Thomas et al 2017)
 - HI rotational velocity (Morales 2006, Huff et al 2013)
- Cross-correlation of shear estimators of optical and radio surveys drops out wavelength dependent systematics. (Demetroullas & Brown, 2016, 2018)

$$\tilde{\gamma} = \gamma + \gamma^i + \gamma^s$$

Galaxy Shape Measurement in the Radio Band

At ~ 1 GHz faint SF galaxies flux densities should be dominated by synchrotron radiation emitted by the ISM in the disc alone. Measurement approach: galaxy disc model fitting

- Image: use optical methods corrected for galaxy and PSF models
 - Noise correlated.
 - Iterative deconvolution imaging procedure gives poor results w.r.t. requirements. Patel et al. (2015)

	Multiplicative Bias	Additive Bias
SKA1 requirement	0.0067	0.00082
CLEAN images	-0.265 ± 0.02	0.001 ± 0.005

- Visibility: adapt optical methods to the Fourier space or development of new ones.
 - Natural approach, data not yet affected by systematics introduced by the imaging process.
 - So far the only ones to successfully detect radio weak lensing signal. Chang et al. (2004)
 - Computationally demanding and sources not localised.

HPC Bayesian Methods in the Visibility Domain

Galaxy visibility model: analytical FT of the exponential profile

Two Bayesian approaches given the sky *source catalog* (position and integrated flux) and *calibrated visibilities*:

- Single-source model: RadioLensfit (Rivi, Miller 2018)
 - source extraction (sky model + faceting)
 - chi-square fitting of a single source at a time marginalising over position, flux and size
 - likelihood sampling (ML + adaptive grid around the maximum)
 - Multi-threaded code (C+OpenMP), working on MPI extension

• Multi-source model: BIRO - Hamiltonian Monte Carlo (Rivi et al. 2019)

- Joint fitting of all sources in the field of view (ellipticity and size!)
- Analytical likelihood gradient computation for HMC sampler
- GPU-accelerated tool for model and likelihood computation: *Montblanc* (Perkins et al. 2015)

Performance

Simulation SKA1-MID 8 hrs, $t_{\rm acc}=60$ s, 1 channel at 1.07 GHz \rightarrow 9,266,880 visibilities Realistic distribution of sources with SNR $\geqslant 10$

RadioLensfit

BIRO-HMC

2.7 gal/arcmin²
1,000 sources
1 core Intel Xeon E5-2650
+ 2 NVIDIA Tesla K40
computing time per source: 4.64 min/gal (dependent on number of sources, the size is also fitted)

Improved shape measurement accuracy but computationally demanding

Source Detection in the Visibility Domain

GalNest (Malyali, Rivi, Abdalla, McEwen 2019)

- single model + multimodal posterior sampler (MultiNest)
- clustering algorithm (*mean shift*) to identify the source from clustered fake modes
- MPI + GPU-accelerated model and likelihood computation (Montblanc)

Data Challenge

Phase 1 SKA-MID Medium-Deep Band 2 Survey:

5000 deg² to a depth of 2μ Jy RMS (10,000 hrs, z < 0.4)

Very small signal at cosmological scales Cosmic shear requirements:

 $\gamma^{obs} - \gamma^{true} = m\gamma^{true} + c$

• multiplicative bias: $m < 6.4 \times 10^{-3}$

• additive bias:
$$c < 8.0 imes 10^{-4}$$

~ 10^4 pointings of ~ 1 hour each ($\Delta t = 0.5$ s sampling), ~ 6000 frequency channels at a resolution of $\Delta \nu = 50$ kHz, necessary resolution for smearing-induced ellipticity to be acceptable. Very large **data volume** for a continuum survey (**order of PBytes** per pointing) but directly comparable to that expected by HI line galaxy surveys.

OR

Dedicated WL data reduction pipeline to **gridded visibilities** at the SDP so that operations effects on the source morphology are known.

(SKA ECP150007 v2, Brown & Harrison 2018)

Radio Weak Lensing Pipeline (visibility+image)

M. Rivi (INAF-IRA)

Radio data analysis in the visibility domain

Rome, June 18, 2019

Radio Weak Lensing Pipeline (visibility only)

M. Rivi (INAF-IRA)

Radio data analysis in the visibility domain

Rome, June 18, 2019

Bayesian Inference of Radio Observations (BIRO)

MONTBLANC simulation tool.

https://github.com/ska-sa/montblanc

Fast data transfer: IBM NVLink + NVIDIA Volta GPUs

M. Rivi (INAF-IRA)

Radio data analysis in the visibility domain

Rome, June 18, 2019

э

Conclusions

- High sensitivity and resolution of the new generation of radio telescopes allow measurement of cosmological weak lensing signal in the radio band
- Radio images may not be accurate enough for galaxy shape measurements
- Methods in the visibility domain are so far the only ones to successfully detect radio weak lensing but are computationally very challenging because of the big data.
- HPC Bayesian methods in the visibility domain can use more accurate SF galaxy models and reduce shear bias
 - RadioLensfit working well for SKA1 source density and is very fast
 - *HMC* more accurate but much slower for large number of sources, even using GPUs
 - The two approaches may be combined for higher source density regions.
- RWL may need of a dedicated pipeline to run where the data is stored