Marzia Rivi
marzia.rivi@inaf.it

INAF Institute of Radioastronomy

INAF Science Archives & the Big Data Challenge
Rome, June 18, 2019
Radio data

Use case: Radio Weak Lensing Surveys

Image vs Visibilities

HPC analysis methods in the Visibility Domain

Data Challenge → RWL pipeline

Conclusions
Radio Data

Radio interferometers produce complex visibilities sampled at discrete locations in the Fourier domain (uv plane)
sampling function (uv coverage): $S(u, v) = \sum_i \delta(u - u_i, v - v_i)$

complex raw visibilities

$$V(u, v) \sim \int \int I(l, m) e^{-2\pi i (ul + vm)} dl dm$$

↓ calibration, gridding, FFT
dirty image

$$I^D = \int \int S(u, v) V(u, v) e^{2\pi i (ul + vm)} dudv = I \ast PSF$$

↓ iterative PSF deconvolution
clean image
New generation of radio interferometers, such as SKA, provide:

- high resolution (antennas distributed over a very large area)
- high sensitivity

for radio continuum surveys

MEANING

- observation of large number density of faint extended sources
- big data volume not supported by current tools
- traditional imaging algorithms cannot be applied anymore
Square Kilometre Array (SKA) Mid-Frequency

SKA-MID South Africa 350 MHz - 14 GHz

Phase 1: 64 MeerKAT 13.5m + 133 SKA 15m dishes
max baseline 150 km, resolution 0.3 arcsec
$\sim 3 \text{ gal/arcmin}^2 \rightarrow 10^4 \text{ sources in } 1 \text{ deg}^2 \text{ FoV!}$

Phase 2: $\sim 2000 \text{ dishes, } \sim 10 \text{ gal/arcmin}^2$
Use Case: Radio Weak Lensing

For a large sample of background galaxies: $\gamma \sim \langle e \rangle$.
Use Case: Radio Weak Lensing

- **Higher redshift** source distribution (beyond LSST and Euclid).
- Redshift measurement from detection of HI 21 cm lines.

![Diagram showing object, PSF, and resulting image](image)

- **Well-known** and **deterministic knowledge of PSF** (from antennae positions) solves one of the biggest systematic errors.
Use Case: Radio Weak Lensing

- Other measurements may provide estimate of galaxy’s intrinsic orientation allowing **mitigation of intrinsic alignments**:
 - *HI rotational velocity* (Morales 2006, Huff et al 2013)

- **Cross-correlation** of shear estimators of optical and radio surveys drops out wavelength dependent systematics. (Demetroullas & Brown, 2016, 2018)

\[
\tilde{\gamma} = \gamma + \gamma^i + \gamma^s
\]

\[
\langle \tilde{\gamma}_o \tilde{\gamma}_r \rangle = \langle \gamma \gamma \rangle + \langle \gamma^i \gamma \rangle + \langle \gamma^i \gamma^i \rangle + \langle \gamma^i \gamma^i \rangle + \langle \gamma^s \gamma^s \rangle
\]

- Cosmic shear signal
- Intrinsic correlations in galaxy shapes (GI & II signals)
- Systematics will be uncorrelated for optical and radio telescopes
Galaxy Shape Measurement in the Radio Band

At \sim 1\text{GHz} faint SF galaxies flux densities should be dominated by synchrotron radiation emitted by the ISM in the disc alone.

Measurement approach: \textbf{galaxy disc model fitting}

- **Image**: use optical methods corrected for galaxy and PSF models
 - Noise correlated.
 - Iterative deconvolution imaging procedure gives poor results w.r.t. requirements. \textit{Patel et al. (2015)}

<table>
<thead>
<tr>
<th></th>
<th>Multiplicative Bias</th>
<th>Additive Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKA1 requirement</td>
<td>0.0067</td>
<td>0.00082</td>
</tr>
<tr>
<td>CLEAN images</td>
<td>-0.265 ± 0.02</td>
<td>0.001 \pm 0.005</td>
</tr>
</tbody>
</table>

- **Visibility**: adapt optical methods to the Fourier space or development of new ones.
 - Natural approach, data not yet affected by systematics introduced by the imaging process.
 - So far the only ones to successfully detect radio weak lensing signal. \textit{Chang et al. (2004)}
 - Computationally demanding and sources not localised.
Galaxy visibility model: analytical FT of the exponential profile

Two Bayesian approaches given the sky source catalog (position and integrated flux) and calibrated visibilities:

- **Single-source model**: RadioLensfit (Rivi, Miller 2018)
 - source extraction (sky model + faceting)
 - chi-square fitting of a single source at a time marginalising over position, flux and size
 - likelihood sampling (ML + adaptive grid around the maximum)
 - Multi-threaded code (C+OpenMP), working on MPI extension

- **Multi-source model**: BIRO - Hamiltonian Monte Carlo (Rivi et al. 2019)
 - Joint fitting of all sources in the field of view (*ellipticity and size!*)
 - Analytical likelihood gradient computation for HMC sampler
 - GPU-accelerated tool for model and likelihood computation: Montblanc (Perkins et al. 2015)
Performance

Simulation SKA1-MID 8 hrs, $t_{\text{acc}} = 60$ s, 1 channel at 1.07 GHz $\rightarrow 9,266,880$ visibilities
Realistic distribution of sources with SNR ≥ 10

RadioLensfit

- $a_1 = 0.9365 \pm 0.0017$
- $a_2 = 0.9262 \pm 0.0017$ (at 2.7 gal/arcmin2)
- 104 sources
- 8 cores Intel Xeon E5-2650
- *computing time per source*: 2.4 sec/gal
 (independent of number of sources)

BIRO-HMC

- 2.7 gal/arcmin2
- 1,000 sources
- 1 core Intel Xeon E5-2650 + 2 NVIDIA Tesla K40
- *computing time per source*: 4.64 min/gal
 (dependent on number of sources, the size is also fitted)

Improved shape measurement *accuracy* but *computationally demanding*
Source Detection in the Visibility Domain

GalNest (Malyali, Rivi, Abdalla, McEwen 2019)

- single model + multimodal posterior sampler (MultiNest)
- clustering algorithm (*mean shift*) to identify the source from clustered fake modes
- MPI + GPU-accelerated model and likelihood computation (Montblanc)

SKA1-MID simulation at 1.07 GHz

98/100 galaxy detections at SNR ≥ 10
reliable source detection down to SNR ~ 5
Data Challenge

Phase 1 SKA-MID Medium-Deep Band 2 Survey:
5000 deg2 to a depth of 2μJy RMS (10,000 hrs, $z < 0.4$)

Very small signal at cosmological scales
Cosmic shear requirements:
\[\gamma^{obs} - \gamma^{true} = m\gamma^{true} + c \]

- multiplicative bias: $m < 6.4 \times 10^{-3}$
- additive bias: $c < 8.0 \times 10^{-4}$

\[\sim 10^4 \text{ pointings of } \sim 1 \text{ hour each (} \Delta t = 0.5 \text{ s sampling)}, \]

\[\sim 6000 \text{ frequency channels at a resolution of } \Delta \nu = 50 \text{ kHz,} \]

necessary resolution for smearing-induced ellipticity to be acceptable.

Very large data volume for a continuum survey (order of PBytes per pointing)
but directly comparable to that expected by HI line galaxy surveys.

OR

Dedicated WL data reduction pipeline to gridded visibilities at the SDP so that
operations effects on the source morphology are known.

(SKA ECP150007 v2, Brown & Harrison 2018)
Bayesian Inference of Radio Observations (BIRO)

MONTBLANC simulation tool.
https://github.com/ska-sa/montblanc

Fast data transfer: IBM NVLink + NVIDIA Volta GPUs
Conclusions

- High sensitivity and resolution of the new generation of radio telescopes allow **measurement of cosmological weak lensing signal in the radio band**

- **Radio images may not be accurate enough** for galaxy shape measurements

- **Methods in the visibility domain** are so far the only ones to successfully detect radio weak lensing but are **computationally very challenging because of the big data.**

- **HPC Bayesian methods** in the visibility domain can use more accurate SF galaxy models and reduce shear bias
 - *RadioLensfit* working well for SKA1 source density and is very fast
 - *HMC* more accurate but much slower for large number of sources, even using GPUs
 - The two approaches may be combined for higher source density regions.

- **R WL may need of a dedicated pipeline to run where the data is stored**