INAF Science Archives & the Big Data Challenge

Astrofisica con Specchi a Tecnologia Replicante Italiana

Aster*ics*

ASTRI data handling and archiving

S. Lombardi, INAF-OAR and ASI-SSDC, Rome, Italy
and L. A. Antonelli, C. Bigongiari, M. Cardillo, S. Gallozzi,
F. Lucarelli, M. Perri, F. G. Saturni, A. Stamerra, V. Testa
for the CTA ASTRI Project

Outline

4 ASTRI Project

- 4 ASTRI Data Center
- **4** ASTRI Data Handling activities:
 - ASTRI data reduction and analysis software
 - ASTRI MC simulations
 - ASTRI archive system
- Summary and outlook

ASTRI Project (in a nutshell)

- Sub-project within Cherenkov Telescope Array (CTA) led by INAF
- End-to-end prototype of the CTA Small-Size Telescopes (SSTs) with a dual-mirror optics design: the <u>ASTRI-Horn telescope</u>, installed at Mt. Etna (Italy) (verification phase in the last 2 years, scientific validation phase by fall 2019)
- <u>Mini-array of 9 ASTRI telescopes</u> to be deployed in Tenerife and proposed as a pathfinder of the CTA Observatory (joint efforts with Italian, Brazilian, and South African institutes, within CTA)
- Final aim: contribution to the installation of a considerable amount of (70) CTA SSTs

ASTRI Data Handling overview

ASTRI is an INAF end-to-end project aimed at the realization of a prototype of a dual-mirror Cherenkov Telescope and of a mini array of 9 of such a telescopes.

The Project is inclusive of a complete Data Handling System and foresees an ASTRI Data Center.

ASTRI data flow

ASTRI Data Center

ASTRI Data Center in Rome

- **Pipelines** developed in INAF and SSDC also within *H2020 Project ASTERICS* in a end-to-end approach.
- Archive concept: developed within the *H2020 Project INDIGO-DataCloud* as a distributed archive.
- Data already present in the Archive: ASTRI MC data, real data from ASTRI prototype, scientific simulations from ACDC.
- 3 sites involved: @INAF-OAR (as main archive of ASTRI prototype), @INFN-LNF to access the GRID, @SSDC-ASI to provide final user with a data access in a scientific & MWL environment.
- Science Gateway: to provide access to users from the preparation and submission of Observing Proposals to final scientific data.

Asterics

INDIGO - DataCloud

INAF

ATTO NAZIONALE

LBi.S.Co

ASTRI CTA Data Challenge Project

ACDC (ASTRI/CTA Data Challenge) is an INAF project (PI. P. Caraveo) carried out in the framework of the CTA and ASTRI programs to foster the Italian community of the TeV astronomy, developing know-how and experience for data-analysis in the light of the early science of the CTAO. ACDC is includes 85 scientist (36 staff FTE + 9,6 non-staff FTE) in 9 INAF structures. The project officially started on September 2017 and will end in 2019.

Aims

- End-to-end simulation of a realistic 3 years of observations of a sample of targets:
 - 9 ASTRI SSTs in a realistic layout
 - E range = ~1 TeV ~200 TeV
 - \blacktriangleright FoV ~ 10 deg²
- Call for Proposal process
- Specific Pointing plan

Simulation and Analysis

- Simulation performed with CORSIKA/sim_telarray
- IRF generation with A-SciSoft •
- Simulation of event-lists with *ctools* (v.1.5.2) •
- Systematic analysis of all the observations to ٠ determine significance, mean flux and spectrum of all the simulated sources (with *ctools*)
- No blind source-detection / No temporal selection •

Selected Targets

* LS 5039	* HESS J1632-478
LMC P3	and
* Sculptor	HESS J1634-472
✤ Reticulum II	✤ HESS J1833-105
Tucana II	* SNR G0.9+0.1
✤ HESS	* MSH 15-52
J1748-248	* NGC 1068
✤ HESS	* W28
J1018-589	Westerlund 2
✤ HESS	Crab
J1825-137	* PKS 2155-304
* HESS	
J1303-631	
✤ Vela X	

4 ASTRI Data Handling main activities:

- On-site/off-site Archives and Pipelines
- MC simulations (for performance assessment and real data reduction)
- Prototype data reduction (for commissioning/validation phases)
- Mini-array IRFs production (for science prospects and INAF ACDC Project)
- Utilization/testing of CTA Science tools (*ctools* and *Gammapy*)
- Real Time Analysis for ASTRI prototype
- Machine/Deep Learning activities
- Scientific Gateway for the ASTRI mini-array
- Currently focus on ASTRI SST-2M prototype activities
- Soon focus on preparatory phase for the mini-array DH system

ASTRI data reduction and analysis software

Breakdown stages; Basic functionalities; Auxiliary modules / Pipeline modules; I/O Data level.

SPIE 991315 (2016); SPIE 107070 (2018); Astronomy & Computing (in prep.)

S. Lombardi et al. – INAF Science Archives & the Big Data Challenge – Rome, 17-19 June 2019

<u>A-SciSoft (astripipe):</u>

- Real and MC ASTRI data reduction
- Single-telescope-wise and Array-wise data reduction
- On-line/on-site/off-site data reduction
- run on x86 / ARM CPUs & NVIDIA GPUs
- FITS data format from DL0 to DL4
- C++/Python/CUDA
- Independent (*auxiliary* and *pipeline*) modules
- Python pipeline wrapper
- CTA Science Tools compliance

Validation tests from dedicated ASTRI MC simulations:

- End-to-end single-telescope & array MC data reduction validation
 - Single-telescope sensitivity in line with (analytical) expectations
 - Array sensitivity in line with previous estimates* (achieved with an independent MC data analysis chain)

Single-telescope differential sensitivity (50,50h)

* Di Pierro et al., J. Phys.: Conf. Ser. 718, 052008 (2016).

Real prototype data reduction and analysis

- First ever detection of an astrophysical source at TeV energies with a Cherenkov telescope in dual-mirror Schwarzschild-Couder configuration
- **4** First detection of an astrophysical source by a CTA prototype telescope

MC simulations software

CORSIKA (COsmic Ray Simulation for Kascade) is a program for detailed simulation of extensive air showers initiated by high energy cosmic ray particles by D.Heck and T.Pierog

- D. Heck et al., Report FZKA 6019 (1998)
- <u>https://www.ikp.kit.edu/corsika/index.php</u>
- Used by many experiments in gamma-ray astronomy, neutrino astronomy and cosmic-ray physics
- CORSIKA version 6.99 (presently in use in CTA)

4 *Sim telarray* is a program for detailed simulation of IACT by K. Bernlöhr

- K. Bernlöhr, Astropart.Phys.30:149-158 (2008)
- <u>https://www.mpi-hd.mpg.de/hfm/~bernlohr/sim_telarray/</u>
- Extensively cross-checked against data from HEGRA and HESS arrays
- Never used before CTA on dual mirror telescopes nor on telescopes not equipped with FADCs
- ASTRIconverter (part of the A-SciSoft software package)

A-SciSoft (already discussed in previous slides)

Computational and storage needs

Let's consider a realistic simulation of an array composed of 15 ASTRI-like telescopes to estimate its IRFs. We need to simulate at least gamma and proton events over the energy range of interest.

	E _{Min}	[GeV]	E _{Max}	[TeV]	E _{Slope}	R _{Max}	[m]	$artheta_{Max}$	[deg]	Random points	<e> [TeV]</e>
Gamma		100		330	1.5		1800		10.0	20	5.74
Proton		100		600	1.5		2400		10.0	20	7.75

We need at least 2×10⁸ gamma and 2×10⁹ proton showers to estimate the IRFs of this array

The simulation of these showers with *CORSIKA* 6.99 requires <u>~2×10⁵ HS06 years</u> with <u>~100 TB</u> of output data (number of files ~2×10⁴)

The simulation of the telescope response with *sim_telarray* requires <u>~2×10⁴ HS06 years</u> with <u>~3 TB</u> of output data (number of files ~3×10⁵)

Such amounts of computing power (data reduction not included!) can be achieved with **GRID computing** / **Big Data Centers**

ASTRI Archive System

ASTRI User Access

ASTRI User Access #1

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

ASTRI Gateway

ASTRI Gateway

4 ASTRI Data Center in Rome:

- Efficient handling of ASTRI prototype and ACDC Project data
- It is going to be enlarged, involving 3 distinct sites (INAF-OAR, INFN-Frascati, ASI-SSDC) in order to be ready for ASTRI mini-array data handling

4 ASTRI data reduction and analysis:

- Proper processing of ASTRI prototype real data (Crab Nebula detection!); adopted for the ACDC Project for ASTRI mini-array IRFs generation
- Ready in its core components for the ASTRI mini-array real data reduction (further development and improvement already planned)

4 ASTRI MC simulation:

- Entire chain in operation for both ASTRI prototype and mini-array
- MC validation activities on-going

4 ASTRI Archive System and Gateway:

- Proper archiving and retrieving of ASTRI prototype data and ACDC Project data
- Distributed approach tested with ASTRI prototype data in view of the ASTRI miniarray application

BACKUP SLIDES

<image>

End-to-end prototype installed at Serra La Nave observatory (Mt. Etna, Sicily)

Mainly a technological (HW&SW) demonstrator Telescope verification phase: 2017-2018 Scientific validation phase by 2019

The ASTRI-Horn telescope

4 Telescope characteristics:

- Optical design = Schwarzschild-Couder
- Primary mirrors = 4.3 m (segmented)
- Secondary mirror = 1.8 m (monolithic)
- F/D₁ = 0.5; F = 2.15 m
- M1-M2 distance = 3.0 m
- \blacktriangleright Effective Area = 6.5 m²

4 Camera properties:

- Sensor type = SiPMs
- > Number of PDMs = 21(37)
- > Number of logical pixels = 1344(2368)
- \blacktriangleright Pixel size = 0.19° (plate scale = 37.5 mm/°)
- \blacktriangleright Field of View = 7.6°(10.9°)

Expected performance:

- \succ Energy threshold ≈ 1 TeV
- > Energy/Angular resolution $\leq 25\% / \leq 0.15^{\circ}$
- Sensitivity \approx 1 Crab @ 5 σ in few hours

The ASTRI mini-array

4 Main characteristics:

- 9 ASTRI-like telescopes
 - ~250 m telescopes' relative distances
- Schwarzschild-Couder optical design
 - Primary mirrors = 4.3 m (segmented)
 - Secondary mirror = 1.8 m (monolithic)
- SiPM sensor camera
 - Number of logical pixels = 2368 (37 PDMs)
 - Field of View = 10.9°
- Expected performance:
 - Energy threshold ~1 TeV
 - Energy / Angular resolution $\leq 15\%$ / $\leq 0.1^{\circ}$
 - Sensitivity: better than current IACTs above ~10 TeV
- Science cases: Galactic PWNe, SNRs, GC, bright BL Lacs and radio galaxies, extreme blazars, CR PeVatrons, Fund. Phys. and DM searches
- Synergies: LIGO/Virgo, IceCube/KM3NeT, satellites and ground-based telescopes (from radio to VHE γ-rays), …

A-SciSoft general requirements

CTA compliance: *A-SciSoft* shall be as much as possible compliant with the CTA requirements and specifications and developed within the framework of the CTA pipelines sub-project;

ASTRI project aim: *A-SciSoft* shall be able to reduce data from both the ASTRI SST-2M prototype and ASTRI mini-array up to the scientific products;

con/off-site processing: A-SciSoft shall be able to process data both on-site and off-site;

con-line processing: *A-SciSoft* shall be able to perform an on-line data reduction during data taking in order to be able to generate real-time performance and scientific monitoring alerts;

Iow-power consumption and parallel processing: *A-SciSoft* shall be able to perform data reduction by means of low-power consumption and parallel computing processors (ARM/ GPUs), in addition to conventional CPUs;

***MC data processing**: *A-SciSoft* shall be able to perform the reduction of raw MC data, in addition to real raw data;

***system integration**: *A-SciSoft* shall be able to efficiently interface with all external subsystems for which an interface exists (e.g. archive system, calibration database, on-site central control software system, etc.);

A-SciSoft general requirements

flexibility: A-SciSoft shall be flexible enough to allow an easy update in case of any possible changes in the ASTRI SST-2M prototype and mini-array hardware and raw data content/format;

***modularity**: A-SciSoft shall be composed by a set of independent modules organized in efficient pipelines in order to limit inter-dependencies throughout the code and provide an easier maintainability;

*** portability**: *A-SciSoft* shall be designed for portability on UNIX-like platforms;

***external dependencies**: *A-SciSoft* shall exclusively make use of open source libraries whose number should be minimum;

programming languages: A-SciSoft shall be written in C++ and Python (for data processing with conventional and ARM CPUs) and CUDA (for GPU processing);

✤I/O data format: A-SciSoft shall be able to handle the standard Flexible Image Transport System (FITS) data format (following the NASA-OGIP standards) for input/output (I/O) operations;

Continuation: A-SciSoft shall be extensively documented in order to allow for continual maintenance and updates;

high-level analysis CTA compliance: A-SciSoft shall be able to generate event lists and instrumental response functions data in a format compatible with the adopted CTA Science Tools.

- **EVT***n* (*event-list data*): EVT(0,1a,1b,1c,2a,2b,3)
 - from raw data to high-level fully reduced event-list data
- **MC***n* (*Monte Carlo event-list data*): similar definitions as in EVT*n*
- **CAL***n* (*calibration data*): CAL(0,1,2)
 - used for cameras, optics, and array calibrations
- **MC-CAL***n* (*Monte Carlo calibration data*): similar definitions as in CAL*n*
- **SCI-TECH***n* (set of technical data for scientific data reduction): SCI-TECH(0,1,2,3)
- **LUT***n* (look-up-tables data): LUT(1,2)
 - used for telescope-/array-wise event reconstruction
- **IRF***n* (*instrument response functions data*): IRF(2,3)
- **CALDB** (*calibration database*)

FITS data format adopted

SPIE 991315 (2016); SPIE 107070 (2018)

A-SciSoft data levels

- Level 0 (DL0): raw data from the hardware/software data acquisition components that are permanently archived;
- Level 1 (DL1): telescope-wise reconstructed data (*reconstructed shower parameters per telescope*). Specific to ASTRI data model, the following sub-data levels are defined:
 - Level 1a (DL1a): telescope-wise calibrated data;
 - Level 1b (DL1b): telescope-wise cleaned and parameterized data (telescope-wise image parameters);
 - Level 1c (DL1c): telescope-wise fully reconstructed data (telescope-wise energy, arrival direction, particle identity discrimination parameters per telescope)
- Level 2 (DL2): array-wise reconstructed data (*reconstructed shower parameters per event*). Specific to the ASTRI data model, the following sub-data levels are defined:
 - Level 2a (DL2a): array-wise merged data (array-wise event parameters);
 - Level 2b (DL2b): array-wise fully reconstructed data (array-wise energy, arrival direction, particle identity discrimination parameters per event)
- Level 3 (DL3): reduced data (selected list of events plus corresponding instrument response functions);
- Level 4 (DL4): science data (high-level scientific data products);
- Level 5 (DL5): observatory data (legacy observatory data and catalogs).

SPIE 991315 (2016); SPIE 107070 (2018)

Breakdown stages and executables

astripipe workflow

A-SciSoft deployment

A-SciSoft is deployed by means of conda package manager

conda: open source and language agnostic; available on many Linux distributions, OSX, Microsoft Windows

Widely used (ctapipe, gammapy, astropy, ...)

A-SciSoft conda packages:

- ascisoft (mac-osx / linux-64)
- ascisoft-gpu (linux-64)

All dependencies are handled by the package manager

4 Validation tests for ASTRI prototype from "A-DC1":

First validation of end-to-end single-telescope DL0 → DL4 real-like analysis (DL3 → DL4 achieved with ctools)

Figure 1: *Left*: Significance map of the ON data (\sim 5.8 hours) sky region obtained with the *ctskymap ctools* task. The white dotted circle in the lower right indicates the point-spread function (68% containment) of the analysis. *Right*: Differential spectrum of the Crab Nebula between 0.7 TeV and 8 TeV obtained from the analysis of the ON data (\sim 5.8 hours) obtained with the *csspec ctools* task. The blue line reprints the best-fit power-law parameterization of the Crab Nebula measured by the HEGRA Coll. [19].

4 ASTRI SST-2M prototype **verification phase**:

- > October 2017 \rightarrow first scientific runs (19/21 PDMs^{*}, not nominal optics)
- January 2018
 consistent trigger scans (21/21 PDMs^{**}, not nominal optics)

- Real data properly archived on-site/off-site and processed off-site (automatic on-site processing expected to be accomplished soon)
- ▲ Some HW issues (primary and secondary mirrors' reflectivity, camera HG channel, telescope pointing accuracy) → hardware improvements foreseen in the next months
 → nominal system condition by fall 2019
- ▲ <u>Scientific validation phase</u> foreseen from fall 2019 → new Crab Nebula observations
 → full system characterization

* Acquisition rate not in nominal camera condition / ** Acquisition rate in nominal camera condition

MC simulations aims

No test-beam available for IACTs!

- No way to optimize its design before completion
- No way to measure its performance (\rightarrow IRFs)

Simulations are essential through all the life of any IACT array:

- 1. Telescope project development
 - Design optimization
 - Layout optimization, Array trigger optimization
 - Optimization of observational strategies
- 2. Telescope/Array commissioning
 - Optimization of telescope performance (←→MC validation)
- 3. Data taking
 - Production of gamma samples to train gamma/hadron strategies
 - Computation of array IRFs
 - Continuous MC validation

MC simulations contents

What do we need to simulate?

- Signal events: 1.
 - Gamma events from point-like sources \bullet According to source spectrum According to source visibility
 - Diffuse gamma events • Off-axis IRFs (extended sources)

Background events: 2.

- Proton events (mandatory) \bullet
- Electron events \bullet
- Helium events \bullet
- Heavier nuclei \bullet

(relevant at lowest energies)