

The GaiaPortal and the Cross-Match algorithms and software developed at SSDC: unique solutions to complex scientific and technological challenges.

INAF Science Archives & the Big Data Challenge Roma, 17-19 june 2019

A cross-match is not a cone search A cross-match is always a trade-off A cross-match is always a trade-off A fraction of mismatched and/or missed objects is always present Large stellar catalogues : density variations +

Missed counterparts + Single counterpart is not always the right answer

Barnard star: pm_{total} ~10393.59 mas/yr star motions -> standard model: full covariance matrix for positions, proper motions and parallax

What's **"large"** : number of sources number of columns needed by the cross-match

```
Example Gaia DR2 : 1 692 919 135 sources
```

gaiaMinimal = 40GB (3 columns, no indexes) gaiaBasecat = 308 GB + 40 GB (24 columns, 1 primary key, 1 index) gaiaSource = 583 GB + 45 GB (94 columns, 1 primary key, 1 index)

sizes refer to MyISAM tables

Marrese et al. 2017, A&A 607, 105 Marrese et al. 2019, A&A 621, 144

External catalogues number of sources + basecat size

Pan-STARRS1 DR1	: 138GB + 52GB (8 columns)
GSC2.3	: 64GB + 21GB (8 columns)
PPMXL	: 98GB + 16GB (12 columns)
AIIWISE	: 65GB + 17GB (9 columns)
2MASS PSC	: 30GB + 8GB (9 columns)
SDSS DR9	: 35GB + 12GB (9 columns)
URAT-1	: 17GB + 5GB (8 columns)
APASS DR9	: 4.3GB + 1.4GB (8 columns)
Tycho 2	: 292MB + 65MB (12 columns)
RAVE DR5	: 32MB + 20MB (8 columns)
Hipparcos 2	: 14MB + 3.1MB (12 columns)
	~ 585 GB

GaiaPortal DB: 2.6 TB

XM: data curation & preservation

Is the **active and ongoing management of data** through its life cycle of interest and usefulness. **Preserving:** Collecting and taking care of research data. **Sharing:** Revealing data's potential across domains **Discovering:** Promoting the re-use and new combinations of data

The processes of **collecting** data from diverse sources and **integrating** it into repositories that are many more times more valuable than the independent parts.

The **process of caring for data**, including to organizing, describing, cleaning, enhancing and preserving data for public use **providing meaningful and enduring access** to data allowing for users engaging in **data discovery and analysis**.

XM general principles

- Large size -> precomputed + best match
- Collaboration framework -> performances + general purpose
- Trade-off between correctness and completeness
- Spider not chain for multiple catalogues XM: independent but homogeneous
- Consistency -> positional XM, no photometry
- Trust your data and use the catalogues position errors (2D equivalent of 5σ)
- Get to know and understand your data
- XM is efficient in finding out if there is something wrong in the astrometry or there is an effect which was not accounted for
- Use a priori knowledge (see Panstarrs1) but no prejudices (2MASS)
- Beware of wavelength differences (AllWISE)
- Beware of binaries with an astrometric signature

Apply a special treatment (position error broadening) **ONLY IF** reason is known and affected sources can be identified

Catalogues preparation

- Catalogue acquisition (from original repositories)
- Catalogue ingestion
- Catalogue homogenization
- Basecat production
- Basecat cleaning (when needed)
- Basecat + Catalogue update
- Local density computation -
- Basecat update

Catalogue	Radius _{max} (arcsec)
Gaia DR2	300
Pan-STARRS1 DR1	120
GSC 2.3	480
PPMXL	480
SDSS DR9	600
URAT-1	480
2MASS PSC	600
allWISE	480
APASS DR9	600

CPU intensive: slowest part of XM: ~1 week for Gaia

Possible duplicates: well behaved catalogues

XM steps - Possible duplicates: solution -> self cross-match

XM steps -> Reverse cone-search to account for angular resolution differences

- Calculate a cone search extcat vs Gaia (with proper motions propagation)
 with fixed radius = effective angular resolution / 2
- Find ext Cat sources with 2 or 3 Gaia neighbours (more than 3 means projected geometry needs to be evaluated, crowded field)
- Delete couples/triplets with one or more Gaia sources with no proper motion
- Delete couples/triplets where Δ angular distance > angular resolution / 4
- Remaining ext cat sources will be flagged in the basecat and their position errors will be broadened by effective angular resolution / 2

Ang res difference results: URAT1, 2MASS, allWISE

URAT1 sources:	228 276 482	R = 1.25"
best (Gaia sources)	188 071 510	
best (URAT1 sources)	187 922 547 82.32%	Ang Res = $2.5''$
reverse cone (URAT1 sources)	224 286 814 98.25%	DECerr (peak) = 0.01"
added (URAT1 sources)	3 069 477 1.34%	
2MASS PSC sources:	470 992 970	
best (Gaia sources)	450 688 227	R = 1.25"
best (2MASS sources)	437 576 291 92.91%	$\Delta n \sigma R \rho s = 2.5''$
reverse cone (2MASS sources)	447 763 481 95.07%	errMaj (peak) = 0.06"
added (2MASS sources)	1 124 445 0.24%	
allWISE sources:	747 634 026	D 7.4
best (Gaia sources)	300 207 917	K = 3"
best (allWISE sources)	297 775 002 39.83%	Ang Res (W1) = 6.1"
reverse cone (allWISE sources)	390 343 451 52.21%	RAerr(peak) = $0.05''$
added (allWISE sources)	21 131 648 2.83%	DECERT (peak) = 0.04

XM requirements

Performances :

- parallelization
- minimize number of pairs evaluated by selecting the minimal initial search radius on an object-by-object basis
- read data once
- perform calculations in RAM with no intermediate products on disk
- optimize engine to speed output writing
- minimize mysql connections

Scientific :

- Define best neighbours using a Figure of Merit
- Best and Good neighbours in two separate outputs
- XM is both a source-to-source and a local problem -> take into account the surroundings of the Gaia sources in the ExtCat (local density) + surroundings of ExtCat matched sources in Gaia (mates).

XM solutions: algorithm (dense catalogues)

- Declination strips definition: independent runs of the XM program (each strip has same number of sources)
- Plane sweep technique: define active list δ_A -maxD $\leq \delta_B \leq \delta_A$ +maxD requires data ordered by declination and definition of oid
- filter and refine technique:
 - first filter: square on active list in RA (neighbours)
 - second filter : position errors convolution, haversine distance, mahalanobis distance $\frac{d}{\sigma_{x_C}\sqrt{1-\rho_C^2}} \leq K_{\gamma}$, (good neighbours)
- Likelihood (figure of merit) calculation highest -> best neighbour
- Mates: Two or more Gaia objects with the same best neighbour.

Architecture, DB design and C code optimization for XM

XM servers:

- 2 processors with 8 cores (with hyper-threading) at 2.0 GHz, for a total of 32 cores 256GB RAM
- 2 disks 1.2TB SAS, 10 K rpm
- -> Normal use 4 servers

Bottlenecks:

- Optimisation compromises between CPU usage and I/O
- I/O: writing rather than reading
- Performances (execution time) depends on the characteristics of the external catalogues (stellar density, position errors size)

Writing performance: \sim 200.000 inserts/s

Execution time : 1-5 hours

(slowest is allWISE, reason is access to C data structures)

DB requirement ->

read-intensive write-intensive

MariaDB 10.1 DBMS

Input data: MyISAM engine (light MySQL storage engine) Output data: Percona XtraDB engine (concurrent writing) Mysql connections -> for each strip 2 reading + 2 writing

The code is written in **C language C code data structures**:

active list (updated, not re-created), large square (neighbours), small square (good neighbours), mates, best neighbours. **C code buffers:**

best neighbours & good neighbours writing buffers.

C data structures, number of Gaia strips, size of active lists, .. have been optimised for performance.

BaseCat preparation and XM validation (in particular consistency tests) are longer than an XM run

FUTURE	XM basic XM advanced Query Results	
	WARNING The cross-match of Gaia with several surveys is computed and available in QUERY => XMatched External Catalogues	GARBG
DR3:	Spectral domain	
SSDC Gaia	Radio IR Optic. UV EUV X-ray γ-ray	
Cross-match	Cross-Match Algorithm • Nearest neighbours [Gaia vs UserCat]	
tool	Algorithm parameters Searching radius: (arcsec) • Apply GaiaCat PM • Apply UserCat PM	
	Upload your catalogue	
Spectroscopic	Input file: csv format with mandatory fields: Help Browse UPLOAD ID, RA [deg], DEC [deg], errRA [mas], errDEC [mas], Epoch [Julyr]	
surveys	Gaia columns ALL o csv RA [deg] Site Download	
M dwarfs catalogues	O fits I err.RA G _{band} [mag] O VOtable DEC [deg] IIII I err.DEC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
RR Lyrae catalogues	Reset Query Form SUBMIT Query	

GaiaPortalDR2@SSDC

Gaia DR2 @ SSDC: Architecture and Database Design for data access

General Requirements:

1 scalability :

at each Release, more data will be published

2 complexity :

combinatin of different surveys catalogue contents + epoch data

3 query flexibility :

no typical queries, but variety of scientific cases **static archive** :

no frequent updates (needed only for adding new catalogues and / or new releases)

Requirements for data access:

1 read-intensive use of the database

2 complex queries

Solution adopted for data access:

- distributed and scalable system (Blade HP Gen8+Gen9)
- Shared-Nothing paradigm:
 - each node is independent and autonomous (no shared RAM and storage)
 - horizontally-distributed data and paralle queries (DB sharding, no join between different nodes)
- relational DBMS: MariaDB
 - efficient join
 - engines MyISAM, XtraDB/InnoDB, TokuDB, FederatedX -> flexibility, highly configurable and customizable
 - data size reduction: normalization
 - data redundancy: very limited (shards "edges")
 - small tables
 - small indices

GaiaPortal metadata

(*) DIF: Calderone & Nicastro, http://ross.iasfbo.inaf.it/MCS/

Version 2.0.1

Login Feedback HelpDesk

Home Query DataModels and Statistics

GaiaPortalDR2@SSDC data access

gaiaportal.ssdc.asi.it

HOME page

Basic info on Gaia DR2 and External Catalogues Basic info on Cross-match Useful links: user manual, official DR2 documentation, ESA official page, GACS (main Gaia datacenter),...

QUERY form

allows users to query quickly and easily:

- Gaia DR2 data
- External catalogues
- both simultaneously through the cross-match results

without worrying neither to have in depth knowledge on the structure and organization of the data in the database, nor to correctly write intricate SQL based queries.

Datamodels and Statistics

offers an easy way to navigate through the documentation of all tables available via Query Form

GaiaPortal D	R2	Version 2.0.1 Login Feedback HeipDesk		GaiaPortalDR2@SSDC
Home Query DataModels and Statistics				- /1
Query Form Query Results				
				Reset Query Form
Search In				
Gaia	External Catalogues	XM Best Neighbour	XM Neighbourhood	
None All Objects Only Variables Setup Cuery Result Format Cuery Result Format Strue Binary VOTable Binary	 ✓ None 2MASS AIIWISE Pan-STARR51 SG2C3 PPMXL URAT-1 SUSSid-9 PASSid-9 Hipparcos2 TYCH02 RAVEdris 	 ✓ None Best ZMASS Best AINVISE Best Pan-STARS1 Best CS2.3 Best DRAT Best CRAT Best CRAT Best SDS470 Best Hipparcos2 Best PYCH02 Best RAVEdrS 	 None Neigh ZMASS Neigh AINNSE Neigh SC2.3 Neigh RSC2.3 Neigh RAT-1 Neigh RAT-1 Neigh ADAS5dr9 Neigh ADAS5dr9 Neigh RAVEdr5 	Which catalogue(s)?
Source	inel first			Are you interested in specific objects?
Conditions				
No data source selected. Please fill-in the Search In part of the search in part of t	inel first			D o you want to apply some filters?
Define Output				1
No data source selected. Please fill-in the Search In part	inel first			Define the output content
			Re Pleas	set Query Form SUBMIT Query e select at least one catalogue in "Search In"

- all type RRab RRLyrae
- in a circle of 2 degrees radius centered on Omega Centauri
- having a counterpart in 2MASS and in AllWISE

obtaining in output:

- Gaia DR2 ID, position, proper motion, parallax, and magnitudes
- 2MASS counterparts IDs and magnitudes
- AllWISE counterparts IDs and magnitudes
- angular distance between the source in Gaia and its counterparts in 2MASS and AllWISE

GaiaPortalDR2@SSDC Query form

Advanced query (ADQL) via TAP: SELECT gaia.source_id, gaia.ra, gaia.dec, gaia.parallax, gaia.pmra, gaia.pmdec, rr.int_average_g, rr.int_average_bp, rr.int_average_rp, besttmass.original_ext_source_id, tmass.j_m, tmass.h_m, tmass.ks_m, bestwise.original_ext_source_id, wise.w1mpro, wise.w2mpro, wise.w3mpro, wise.w4mpro, bestwise.angular_distance, besttmass.angular_distance FROM gaiadr2.gaia_source AS gaia JOIN gaiadr2.vari_rrlyrae AS rr ON gaia.source_id=rr.source_id JOIN gaiadr2.allwise_best_neighbour AS bestwise ON bestwise.allwise_oid JOIN gaiadr1.allwise_original_valid AS wise ON wise.allwise_oid=bestwise.allwise_oid JOIN gaiadr2.tmass_best_neighbour AS besttmass ON besttmass.source_id=gaia.source_id JOIN gaiadr1.tmass_original_valid AS tmass ON tmass.tmass_oid=besttmass.tmass_oid WHERE rr.best_classification='RRab' AND 1=CONTAINS(POINT('ICRS',gaia.ra,gaia.dec),CIRCLE('ICRS',201.69700,-47.47947,2.0))

A little complicated, especially if the user is not familiar with ADQL syntax and data content and organization

- all type RRab RRLyrae
- in a circle of 2 degrees radius centered on Omega Centauri
- having a counterpart in 2MASS and in AllWISE

obtaining in output:

- Gaia DR2 ID, po
- 2MASS counterp
- AllWISE counter
- angular distance

Query Result Format
CSV
FITS
VOTable
Binary VOTable

GaiaPortalDR2@SSDC Query form

- all **type RRab** RRLyrae
- in a circle of 2 degrees radius centered on Omega Centauri
- having a counterpart in 2MASS and in AllWISE

obtaining in output:

- Gaia DR2 ID, position, proper motion, parallax, and magnitudes
- 2MASS counterparts IDs and magnitudes
- AllWISE counterparts IDs and magnitudes

- angular distance betwee

rget Name: omega cen Resolv	e by SIMBAD	Target In:	Radius:	120 ©	Arcmin	-
Position: 13:26:47.28 -47:28:46.0		Circle Range				
nditions						
Add condition on Source IDs for	Please Select	• +				
Add condition on Astrometry for	Please Select	• +				
Add condition on Photometry for	Please Select	• +				
Add condition on Astrophysical Parameters for	Please Select	• +				
Add condition on Variability Parameters for	Please Select	• +				
Add condition on Light-Curve Parameters for	Please Select	• +				
Add condition on Classification Flags for RRLyr BestClassification	Please Select	• +				
Add condition on Quality Flags for	Please Select	• +				
Add condition on	Please Select	• +				

GaiaPortalDR2@SSDC Query form

- all type RRab RRLyrae
- in a circle of 2 degrees radius centered on Omega Centauri
- having a counterpart in 2MASS and in AllWISE

obtaining in output:

- Gaia DR2 ID, position, proper motion, parallax, and magnitudes

Define Output

Gaia Source

All Fields

Cepheids

RRLyrae

All Fields

and

🔽 Gaia RA

🗹 Gaia parallax

Gaia BPG

Gaia RadiusVa

Gaia eclLon

CEPandRRLyr P3O

CEPandRRLyr epochBP

CEPandRRLyr intAverageG

CEPandRRLyr intAverageRP

CEPandRRLvr Metallicity

CEPandRRLyr R31G

CEPandRRLyr Phi31G

CEPandRRLyr PeakToPeakBP

CEPandRRLyr numCleanEpochsRP

CEP Type2BestSubClassification

CEPandRRLyr P3Oerror

CEPandRRLyr epochBPerror

CEPandRRLyr intAverageGerror

CEPandRRLyr intAverageRPerror

CEPandRRLyr PeakToPeakBPerro

CEPandRRLyr MetallicityError

CEPandRRLyr R31Gerror

CEPandRRLyr Phi31Gerror

CEPandRRLyr Gabsorption

CEP ModeBestClassification

Gaia

- 2MASS counterparts IDs and magr
- AllWISE counterparts IDs and mag
- angular distance between the sour

Gaia solutionIc Gaia designation Gaia sourceld Gaia refEpoch Gaia RAerror 🗸 Gaia DEC Gaia DECerror Gaia parallaxError Gaia parallaxOverError 🛃 Gaia pmRA Gaia pmRAerror 🗸 Gaia pmDEC Gaia pmDECerror Gaia pmTotal Gaia RADECcorr Gaia RAparallaxCorr Gaia RApmRAcorr Gaia RApmDECcorr Gaia DECparallaxCorr gaia DECpmRAcorr Gaia DECpmDECcorr Gaia parallaxpmRAcorr Gaia parallaxpmDECcorr Gaia pmRApmDECcorr Gaia astrometricNobsAl Gaia astrometricNobsAC Gaia astrometricNgoodObsAl Gaia astrometricNbadObsAL Gaia astrometricGofAL Gaia astrometricChi2AL Gaia astrometricPrimaryFlag Gaia astrometricExcessNoise Gaia astrometricExcessNoiseSig Gaia astrometricParamsSolved Gaia astrometricWeightAL Gaia astrometricPseudoColour Gaia astrometricPseudoColourError Gaia meanVarpiFactorAL Gaia frameRotatorObjectType Gaia astrometricMatchedObservations Gaia visibilityPeriodsUsed Gaia astrometricSigma5dMax Gaia MatchedObservations Gaia DuplicatedSource Gaia photGnObs Gaia photGmeanFlux Gaia photGmeanEluxError Gaia photGmeanFluxOverError Gaia photGmeanMag Gaia photBPnObs Gaia photBPmeanFlux Gaia photBPmeanFluxError Gaia photBPmeanFluxOverError Gaia photBPmeanMag Gaia photRPnObs Gaia photRPmeanFlux Gaia photRPmeanFluxError Gaia photRPmeanFluxOverError Gaia photRPmeanMag Gaia photBPRPexcessFactor Gaia photProcMode Gaia BPRP Gaia GRP Gaia radialVelocity Gaia radialVelocityError Gaia rvNbTransits Gaia rvTemplateTeff Gaia rvTemplateLogg Gaia rvTemplateFeH Gaia photVariableFlag Gaia PriamFlags Gaia TeffVal Gaia TeffPercentileLowe Gaia AGpercentileUppe Gaia TeffPercentileUppe Gaia AGval Gaia AGpercentileLower Gaia eBPminRPval Gaia eBPminRPpercentileLower Gaia eBPmRPpercentileUpper Gaia FlameFlags Gaia RadiusPercentilel owe Gaia RadiusPercentileUpper Gaia LumVal Gaia LumPercentileLower Gaia LumPercentileUpper Gaia I Gaia b Gaia eclLat CEPandRRLyr solutionId CEPandRRLyr variableType CEPandRRLyr PF CEPandRRLyr PFerror CEPandRRLyr P10 CEPandRRLyr P1Oerror CEPandRRLyr P2O CEPandRRLyr P2Oerror

CEPandRRLyr epochG

CEPandRRLyr epochRP

CEPandRRLyr R21G

CEPandRRLyr Phi21G

CEP MultiModeBestClassification

CEPandRRLyr epochGerror CEPandRRLyr epochRPerror CEPandRRLyr intAverageBP CEPandRRLyr intAverageBPerror CEPandRRLyr PeakToPeakG CEPandRRI vr PeakToPeakGerro CEPandRRLyr PeakToPeakRP CEPandRRLyr PeakToPeakRPerror CEPandRRLyr R21Gerror CEPandRRLyr Phi21Gerror CEPandRRLyr numCleanEpochsBF CEPandRRLyr numCleanEpochsG CEPandRRLyr GabsorptionError CEP TypeBestClassification

RRLvr BestClassification

GaiaPortalDR2@SSDC Query form

- all type RRab RRLyrae
- in a circle of 2 degrees radius centered on Omega Centauri
- having a counterpart in 2MASS and in AllWISE

obtaining in output:

- Gaia DR2 ID, position, proper motion, parallax, and magnitudes
- 2MASS counterparts IDs and magnitudes
- AllWISE counterparts IDs and magnitudes
- angular distance between the source in Gaia and its counterparts in 2MASS and AllWISE

SUBMIT Query:

the chosen parameters are passed to the Query Parser which deals with the composition of a syntactically correct mySQL query. The query is then launched on the shards. Once the query ends, the output is converted into the user desired format.

GaiaPortalDR2@SSDC Query form

SUBMIT Query

Reset Query Form

2MASS	 2MASS designation 2MASS errMin 2MASS H 2MASS jDate 	 2MASS RA 2MASS errAng 2MASS Herror 2MASS extKey 	 2MASS DEC 2MASS J 2MASS Ks 2MASS phQual 	2MASS errMaj 2MASS Jerror 2MASS Kserror
AllWISE	 AllWISE designation AllWISE DECerror AllWISE W2mpro AllWISE W4mpro AllWISE WarFlag AllWISE W3mjdMean AllWISE W2gmag AllWISE W4gmag 	 AllWISE RA AllWISE RADECcoError AllWISE W2mproError AllWISE W4mproError AllWISE PhotQual AllWISE W4mjdMean AllWISE W2gmagError AllWISE W4gmagError 	 AllWISE RAerror AllWISE W1mpro AllWISE W3mpro AllWISE ccFlags AllWISE W1mjdMean AllWISE W1gmag AllWISE W3gmag AllWISE 2MASSkey 	 AllWISE DEC AllWISE W1mproError AllWISE W3mproError AllWISE ExtFlag AllWISE W2mjdMean AllWISE W1gmagError AllWISE W3gmagError
XM Best N Best 2MASS All Fields	eighbour best2MASS AngularDistance best2MASS GaiaAstrometricParams	best2MASS NumberOfNeighbours	best2MASS NumberOfMates	best2MASS BestNeighbourMultiplicity
Best AllWISE All Fields	 bestAllWISE AngularDistance bestAllWISE GaiaAstrometricParams 	bestAllWISE NumberOfNeighbours	bestAllWISE NumberOfMates	bestAllWISE BestNeighbourMultiplicity

When the user selects the **SUBMIT Query** button, the **Query Results tab** opens automatically

GaiaPortalDR2@SSDC Query results

Home Query Query Form Q Refresh Job List Show 10 9 er	GaiaPortal DataModels and Statistics Query Results ntries Status	Job Id	Username	Data File	Version 2.0.1 Login Feedback HelpDesk	ate Q	uery Start	Search: Query End	A	nonymous ogged Use	User : the rer the the r: the resu An ema the link	e result mains t e query ult hist il is se to dov	t histor the san to dov tory of nt whe vnload	ry of the qu ne. The use wnload the the queries in the job is the result t	eries is a r must w results fi is alway complet carfile	ivailable vait onlin ile vs availab ted, conta	until the ses e the conclu le. aining	sion sion of
Showing 1 to 4 of	SENT COMPLETED COMPLETED COMPLETED 4 entries (filtered fron Showing 1 t	2066 Status WORKING COMPLETE CC CC 0 4 of 4 entries	Jo G 2(ED 2(C C C C C C C C C C C C C C C C C C C	b Id U U D66 Status Status COMPLETED CO	2019-06-14 16 Username 2066 2065 2064 2063 al entries)	:22:26 Data File 🔮 Data Username	Creation Date 2019-06-14 16:22:26 2019-06-14 16:21:15 Data File Data Data Data Data	Query Start 2019-06-14 16:22:27 2019-06-14 16:22:27 2019-06-14 16:21:16 Creation Date 2019-06-14 16:21:15 2019-06-14 16:21:15 2019-06-14 16:21:15 2019-06-14 16:21:49 2019-06-14 16:21:47	Query End	1:43 ery Start 5-14 16:22:27 6-14 16:21:16 3-14 16:20:50 3-14 16:19:48	Query 2019-06-14 2019-06-14 2019-06-14 2019-06-14	End 16:22:53 16:21:43 16:20:52 16:20:14 16:20:14	• 1 Next	t		Us.	More info i forme pro o er Mar	n nge mal
	00						result_ST-166-H7N	/R3HtlzhLlPvzisP6U_JOB2060	6.csv							Apri con NEdit [Droplet 👚	
	gaiaSource_sourceId	gaiaSource_ra	gaiaSource_decl	gaiaSource_parallax	gaiaSource_pmra	gaiaSource_pmdec	gaiaCEPandRRLyr_intAverageG	gaiaCEPandRRLyr_intAverageBp	gaiaCEPandRRLyr_intA	verageRp tmass_desig	nation tmass_jM	1 tmass_hM	tmass_ksM	allwise_designation	allwise_w1mpro	allwise_w2mpro	allwise_w3mpro	
	6082592951578172032	2 202.29536138199725	-48.89349157190899	0.052200422537904634	0.5287700064726006	-1.7936629042859102	16.33002880597719	16.631504489875045	15.876671571617253	13291087-4	853366 15.586	15.141	15.21	J132910.89-485336.7	14.911	15.108	13.111	
	6086786871183499904	200.7447374941185	-46.79010884845046	0.1884669489654821	-16.473888141568587	-4.321672828973421	14.509213208596321	14.698162678490297	14.129037010704874	13225876-4	647243 13.426	13.295	13.321	J132258.74-464724.3	13.277	13.265	12.281	
	6083688103848450816	5 201.28278500445057	-47.61496368085445	0.012885108172077189	-3.2386532050355585	-7.265373560030717	14.299012178760655	14.597819720224237	13.809046409149321	13250786-4	736537 13.268	12.869	12.81	J132507.87-473653.7	12.75	12.778	12.327	
	6083723219505712000	201.88685252748897	-47.228731006504546	0.3025802843184476	-3.358895387897041	-6.62841878074212	14.305048235969211	14.53171240507106	13.837884192656976	13273284-4	713432 13.414	13.134	13.062	J132732.84-471343.2	12.762	12.754	12.711	
	6083516438277274113	200.79303891630067	-45.59694947780802 -47.472436888224955	0.17406230429512393	-13.68956820471773	-0.34892090713900137	14.20866108743078	14.45653543152015	13.901601537918342 14.177022333423746	13231035-4	728206 13.462	13.147	13.245	1132748 42-472820 5	13.147	13.141	12.523	
	6083716381917325056	201.59789804527801	-47.31338597772277	0.18722655251872186	-2.967680272902375	-5.996999012437295	14.25193761555466	14.520296433165656	13.775068449919239	13262349-4	718481 13.23	12.911	12.8	J132623.49-471848.0	12.784	12.86	12.783	
	6083901443435439232	2 202.5003244118268	-47.21825244384749	-0.011402089229550239	9 -6.812043824061973	-0.3047144677375374	15.907313165044698	16.18907372907801	15.408109665343774	13300009-4	713057 14.987	14.638	14.546	J133000.08-471305.5	14.398	14.417	12.651	
	6083514106115158656	5 202.1044551819324	-47.49026290660533	0.17314381734405343	-3.505307973648123	-6.762901870492113	14.548017620421723			13282507-4	729247 13.31	13.096	13.059	J132825.06-472924.8	13.041	13.063	12.987	
	6085116468203901824	198.94185051175705	-48.14150795160573	0.1996889571109965	0.22732900202187586	0.0012639616434013171	17.028658784782653	17.331692971566653	16.580308719861044	13154603-4	808294 16.007	15.571	15.553	J131546.03-480829.5	15.646	15.627	12.98	

GaiaPortalDR2@SSDC Datamodels and Statistics

g
In

GaiaPortal@SSDC: the future

- multi-frequency Cross-Match tool: cross-match small catalogues or user-defined list of sources with Gaia data choosing among different algorithms and figures of merit

DR3

- visualization tool for Gaia photometric epoch data: to visualize light-curves in the three Gaia bands

- computation and visualization tool for Gaia BP and RP spectra

- TAP access:

MySQL translator + management of multiple connections

Stay tuned

Work in progress!

Waiting for

C

EDRS

MID 2020 save the date!

Gaia SSDC Table Access Protocol

- Starting point: **TAPLib 2.0** (AUG 2016) available on https://github.com/gmantele/taplib
- Inclusion of a *MySQL* translator task

Mathematical and trigonometric functions

JOIN and subqueries

Search conditions (WHERE, HAVING, ORDER BY, GROUP BY)

- Geometrical functions based on *MySQL-SPHERE + dynamic index facility (dif) allowing a fast query execution on large tables -> AREA, BOX, CIRCLE...*
- Management of **multiple connections** by using the same DB structure of GaiaPortal (Java code)

On going:

Tests on DR2 data (sync/async) Java code optimization

Future: Service registration and publication to the VO

A priori knowledge vs prejudice

XM results (best neighbours) 450 688 227 matches out of 470 992 970 sources missed ~20 million 2MASS sources (4.3 %)

2MASS is bright all sources should have a Gaia counterpart

red dots Gaia DR2 sources
 yellow rombs 2MASS PSC sources

