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Solar-type pulsators on the main-sequence: pressure modes

Solar-like pulsators → stable oscillations, excited in a stochastic way by turbulent
convection in the external envelope.
On the MS → only pressure modes essentially visible, gravity modes confined in the
core.

→ No information on the core of solar-like pulsators on the MS.

Credits: C. Pinçon
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Red giant stars: mixed-modes probing the core

Coupling between pressure waves in the convective envelope and gravity waves in
the radiative interior → mixed-modes, rich oscillation spectrum.
Mixed-modes → probe the red giant (RG) core.

→ Unique opportunity to derive observational constraints on the rotation of stellar
cores with RG.

Credits: C. Pinçon
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Core rotation measurements: 2012

Slow down of the core rotation on the red giant branch (Mosser et al. 2012):
paradox → the core is contracting!
Important extraction of angular momentum from the core → we need to identify the
physical processes at work.

Source: Mosser et al. 2012, Deheuvels et al. 2014
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Angular momentum transport problem: physical prescriptions

Models based on physical prescriptions for the angular momentum transport → still
predict too fast core rotation rates.
Major discrepancy between models and measurements → we don’t yet fully
understand the physical mechanisms transporting angular momentum in red giants.
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Core rotation measurements: 2018

Gehan et al. (2018) → mean core rotation measurements for 875 RGB stars.
Mixed-mode density N = ∆ν

∆Π1 ν2
max
→ proxy of stellar evolution on the RGB.

Refinement of Mosser et al. (2012) diagnosis → constant rotation with evolution on
the RGB instead of slowing down.
Measurements → low RGB below the bump.
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Angular momentum transport problem: physical prescriptions

Measurements of Gehan et al. (2018) for a sample 10 times larger → confirm that
we still need to identify the physical mechanism(s) slowing down the red giant core
rotation.
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Angular momentum transport problem: physical prescriptions

Measurements of Gehan et al. (2018) for a sample 10 times larger → confirm that
we still need to identify the physical mechanism(s) slowing down the red giant core
rotation.
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Angular momentum transport problem: physical prescriptions

Fuller et al. (2019) → roughly reproduce core rotation measurements for red giants
and white dwarfs.
Problem → prediction of a spin-down for subgiants instead of a spin-up, and a
spin-up on the RGB instead of a constant evolution.
Encouraging result to predict effective core rotation rates along stellar evolution →
but still a lot to understand to solve the angular momentum transport problem.
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Angular momentum transport problem: parameterization

Spada et al. (2016) → parametrize the efficiency of the angular momentum
transport using a diffusion coefficient D = D0

(
Ωrad
Ωenv

)α.
Reproduce both subgiant and RGB measurements → need to enforce a rigid rotation
not only during the MS but also during the early subgiant phase.
Allows to put constraints on the unknown mechanism transporting angular
momentum → but this/these mechanism(s) still need to be identified!

Source: Spada et al. 2016
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Conclusions

With a correct angular momentum transport, we can constrain stellar evolution from
the main-sequence to the red giant phase, including the subgiant phase.

Evolution of the core rotation of red giants → still not correctly predicted by models
including angular momentum transport.

Additional observational constraints from a larger sample with PLATO → crucial to
solve the angular momentum transport problem.

→ All we learn on red giants allows us to constrain the evolution of main-sequence
stars, for which the core cannot be probed.

→ Red giants are key to unravel the internal rotation of exoplanet host stars on the
main-sequence.
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Perspectives: Planet host red giants

Measurement of the mean core rotation → possible to derive measurements of the
stellar inclination angle of the rotation axis.

Large-scale measurements of inclinations for ∼ 1200 red giants (Gehan et al. in
prep) → catalogue of red giants with large i to look for exoplanetary transits.

→ Perspective to have a direct constraint on the core rotation of planet host stars.
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Rotational signature in oscillation spectra

Rotation → similar to the Zeeman effect on modes of same radial order and angular
degree but different azimuthal orders.
Rotational splitting of gravity-dominated dipole modes → mean core rotation rate
(Mosser et al. 2012, Goupil et al. 2013):

δνrot,core '
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2

〈
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〉
core

Source: Di Mauro et al. 2016
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Red giant branch: complicated cases

Confusion limit between rotational splittings and mixed-mode spacings → more
likely reached when stars evolve along the red giant branch.
Consequence → overlapping δνrot and mixed-mode frequency spacings at low
frequency.

Source: Mosser et al. (2012)
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Method

Stretching the spectra: the ζ function

The ζ function characterizes the different nature of ` = 1 p-m and g-m modes:

ζ =
Icore

Ienv + Icore
=

1 +
ν2

q
∆Π1

∆νp
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1
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)
−1

' ∆P
∆Π1

Source: Gehan et al. (2018)
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Method

Automatic identification of the rotational components

Correlation of the observed spectrum with a synthetic spectrum.
The stellar inclination impacts the number of visible rotationally split components:
three components m = {−1, 0,+1} for dipole mixed-modes.

Gehan et al. (2018)
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Method

The choice of the mixed-mode density as a proxy of stellar evolution

Stars enter the red giant branch with a radius depending dramatically on the stellar
mass.
Mixed-mode density → remarkably monitors the fraction of the stellar radius
occupied by the inert helium core along the red giant branch.
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Method

Does the slow-down rate of the core rotation depend on stellar mass?

Selection of different mass ranges.
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Method

Does the slow-down rate of the core rotation depend on stellar mass?

Selection of different mass ranges.
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Method

Evolution of the core rotation as a function of the stellar mass

Evolution of the core rotation on the red giant branch → independent of the stellar
mass.
Refinement of the diagnostic of Mosser et al. (2012) → the core rotation is almost
constant on the red giant branch instead of slightly slowing down.
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Method

Effect of metallicity on the core rotation

Measured rotational splittings and their evolution → no apparent dependence with
metallicity.
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Method

Internal rotation profile: stellar inversion techniques

We cannot firmly constrain the shape of the rotation profile.
Studies → the core rotates 5 to 10 faster than the envelope.
Di Mauro et al. (2018) → constant core rotation in the He core, differential rotation
starts in the H-burning shell.
Deheuvels et al. (2015) → core-envelope rotation gradient much milder for
secondary clump stars, more efficient angular momentum redistribution.
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