

UNIVERSITAT DE BARCELONA

SIMULATION OF gaia CATALOGUE IN plato FIELDS

J.M. Carrasco & E. Masana

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA IEEC

Institut d'Estudis Espacials de Catalunya

PLATO-GAIA SIMULATIONS (WP 131-150)

- Implement additional elements to Gaia simulator
- Provide a tool for the selection of PLATO fields
- Refine Gaia error models
- Simulate PLATO fields from Gaia input
- Photometric transformations
- Part of this work is available in the technical report PLATO-TN-UB-JMC-001.
- We offer the tool and/or the simulations to the PLATO community.

→ Contact us. We are eager to help you

GAIA OBJECT GENERATOR (GOG)

Avoid multiple simulators with different assumptions and models. Share expertise.

PLATO PASSBAND

- PLATO passband from Marchiori et al (2019)
- PLATO passband roman
 Gaia-DR2 passbands (Maíz-Apellániz & Weiler, god data from Jordi et al god (2010).
- We extend Marchiori's Gaia-PLATO relationships to redder sources (A₅₅₀<11 mag) and other phot. systems (Johnson-Cousins, Hipparcos, Tycho, SDSS, 2MASS) .

$y = a_0 + a_1 x +$	$a_2x^2 + a_3x^3$	$+ a_4 x^4$	$+ a_5 x^5$
---------------------	-------------------	-------------	-------------

_	y = f(x)	a_0	a_1	a_2	a_3	a_4	a_5	σ
Gaia	$G - P = f \left(G_{\rm BP}^{\rm bright} - G_{\rm RP} \right)$	-0.0385	0.374	-0.0976	0.01352	-0.000905	0.0000232	0.00869
lohncon	$V - P = f \left(G_{\rm BP}^{\rm bright} - G_{\rm RP} \right)$	0.0309	0.329	0.144	-0.0113	0.000285	-	0.0502
JOHNSON	$V - P = f(V - I_c)$	0.00157	0.478	0.086	-0.0038	-	-	0.0556
Hipparcos	$H_p - P = f(V - I)$	-0.044028	0.761	-0.0235	-	-	-	0.0757
Tycho	$V_T - P = f(B_T - V_T)$	0.060569	0.88823	0.04268	-	-	-	0.530
SDSS	r' - P = f(r' - i')	0.179	0.394	0.435	-0.08	0.00478	-	0.107
2MASS	J - P = f(J - K)	0.058	-2,78	0.302	-	-	-	0.221

GOG-PLATO SIMULATIONS

Phot. transformations can be used to know P magnitudes: Content in Northern and Southern PLATO Fields:

- NPF (l: 65^o, b: 30^o; r=27^o), P < 11 mag
 GOG simulations: 94000 sources ← → Gaia-DR2: 92045 sources
- SPF (l= 253^o, b= -30^o; r=27^o), P < 11 mag
 GOG simulations: 93600 sources ←→ Gaia-DR2: 84307 sources

BACKGROUND ESTIMATION

- We sum fluxes of all Gaia-DR2 sources with G>11 mag in the area defined by 9 pixels wide (135x135 arcsec²)
- No zodiacal light contribution considered
- Gaia ZP from Evans et al 2018

$$G = -2.5 \log\left(\frac{\sum F}{135 \times 135}\right) + 25.7934$$

Background G	Mean	SD	Minimum	Maximum
NPF	25.3656	2.06809	18.35791	32.19283
SPF	25.6546	2.02195	18.64412	32.25911

SOURCES IN PLATO FIELDS (PARALLAX)

Distance (pc)	NPF		SPF		
Distance (pc)	Sources	%	Sources	%	
0-100	2458	3	2370	3	
100-200	7931	8	8144	9	
200-500	26193	28	27670	30	
500-1000	25758	27	25816	28	
1000-2000	21702	23	20721	22	
> 2000	9958	11	8863	9	

Distances from GOG simulations

Distance (nc)	NPF		SPF		
Distance (pc)	Sources	%	Sources	%	
0-100	2787	3	2712	3	
100-200	8696	10	8674	10	
200-500	27745	30	26254	31	
500-1000	22658	25	21301	25	
1000-2000	20673	23	17974	21	
> 2000	8866	10	6766	8	

Distances from Bailer-Jones et al, 2018

COLOURS & PARALLAX

- We can predict with the photom. relationships the P magnitude from Gaia-DR2 magnitudes
- G-P=f(G_{BP}-G_{RP}) can only be applied in -1<G_{BP}-G_{RP}<11 mag.

1e4

5000

2000 1000 500

200 و الم الم

> 50 20

10 5

2

NPF sources in GaiaDR2
SPF sources in GaiaDR2

SOURCES IN PLATO FIELDS (SPECTRAL TYPES)

20000

GaiaDR2

GAIA-DR2 PERFORMANCES

Fitted uncertainty	Magnitude range	A_0	A_1	A_2	A_3	A_4	A_5
$\log(\sigma_{BP})$	$6 < G_{\rm BP} < 21$	1.3279	-1.7832	0.32006	-0.029038	0.00127305	-0.000020676
$\log(\sigma_{RP})$	$6 < G_{RP} < 21$	-2.1082	-0.045002	0.012918	-0.004909	0.00041313	-0.000009338
Fitted uncertainty	Magnitude range	A_0	A_1	A_2	A_3	A_4	A_5
$\log(\sigma_{\rm G})$	$4 \le G < 7.205$	-8.4057	4.006	-0.8162	0.04931	-	-
$\log(\sigma_{\rm G})$	$11.665 \le G < 12.84$	366.221	-84.6518	6.42937	-0.161951	-	-
$\log(\sigma_{\rm G})$	$13.187 \le G$	361.745	-104.1089	11.72489	-0.65267	0.0179603	-0.00019499
Fitted uncertainty	Magnitude range	γ	β	α			
$\ln[\log(\sigma_G) + 4]$	$7.205 \le G < 9.481$	-10.4559	2.4342	-0.14866	-	-	-
$\ln[\log(\sigma_G) + 4]$	$9.481 \le G < 10.698$	-68.4827	13.4197	-0.66181	-	-	-
$\ln[\log(\sigma_G) + 4]$	$10.698 \le G < 11.665$	-242.2847	43.2316	-1.92987	-	-	-
$\ln[\log(\sigma_G) + 4]$	$12.84 \le G < 13.187$	-1631.225	250.517	-9.62133	-	-	-

GAIA PERFORMANCES (GOG)

VARIABILITY

Type	NPF	SPF
Variable	755	533
Not Available	71623	67783

Gaia-DR2 flag

5.5 6.0 6.5 GOG simulations are still needed.

Type	NPF	SPF
Rotationally Variable Star	584	98
Long-period Variable Star	581	127
Variable Star	433	148
Variable of delta Sct type	208	35
Variable of Mira Cet type	107	56
Eclipsing binary	192	93
Pulsating Variable Star	58	19

Simbad flag

MULTIPLICITY

112 570 stars in double or multiple systems (60%), according to GOG simulations

Close sources in Gaia-DR2 (both PLATO fields)

- 2990 in 1 PLATO pixel = 15 arcsec
- 7485 in 3 PLATO pixels = 77% of the flux, 45 arcsec
- 15240 in 5 PLATO pixels = 99% of the flux, 75 arcsec

Gaia can resolve closer sources than PLATO. Reject them as PLATO targets.

EXOPLANETS (GOG)

- Probability of hosting a planet = f([Fe/H]) Prob. < 0.5
- Probability of having a planet of mass M_P is αe^{-M_P} with 0.2M_J<M_P<15M_J (M_J=Jupiter mass).
- Planet radi (R_P) => R_P = $F(M_P) = \sum_i a_i M_P^i$
- 16500 exoplanets in PLATO fields simulations

All these assumptions can be modified according to your suggestions

For more details see:

Robin et al. 2018, A&A 543, A100 ; Sozzetti, Torres, Latham, 2009, ApJ, 697, 544

UNIVERSITAT DE BARCELONA

THANK YOU

J.M. Carrasco & E. Masana

carrasco@fqa.ub.edu

emasana@fqa.ub.edu

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Institut d'Estudis Espacials de Catalunya