

PIC inputs for photometric extraction and calibration algorithms

Réza Samadi, Victor Marchiori and the DPA-WG

PIC meeting, Padova, 24-26 Sep. 2019

DPA inputs

- Target and contaminant stars:
 - (P) magnitudes and sky positions (ICRS)
 - Proper motions and parallaxes
 - $\Delta P < 10$ mag ; relative accuracy: TBD (~0.05 mag)
 - Distance from the target < 4 pixels ; accuracy: < 10 mas
- Auxiliary information:

LESIA

- some color informations, e.g. T_{eff} or (Gaia) color indices: probably second-order effects (TBC)
- Activity index, binarity flag, and variability class: for the choice of the reference stars used by the in-flight-calibration pipelines.

Outline

- The photometry extraction methods
- Calibration algorithms

PSF fitting photometry

STAR IMAGE

$I_{i,i}$

LESIA

oservatoire

$\hat{I}_{i,i} = a \cdot P_{i,i}(x_c, y_c) + b$ MODELLED **IMAGE:** $\chi^{2} = \sum_{i=1}^{2} \frac{\left(I_{i,j} - \hat{I}_{i,j}\right)^{2}}{\sigma^{2}}$

"Extended" window: only useful pixels outside the standard 6x6 imagette are downloaded together with the 6x6 imagette

Aperture (mask) photometry (on-board)

PLATO passband

12000

14000

plato

(Marchiori et al., 2019, A&A)

```
PA-WG – PIC meeting- Padova – 25 Sep. 2019
```


R. Samadi and the DPA-WG – PIC meeting- Padova – 25 Sep. 2019

Blended **Stellar Binary**

N_T	Gradient Mask	Gaussian Mask	Binary Mask
24	19,608 (39.2%)	19,319 (38.6%)	18,637 (37.3%)
18	15,510 (31.0%)	15,264 (30.5%)	14,806 (29.6%)
12	10,909 (21.8%)	10,701 (21.4%)	10,441 (20.9%)
6	5625 (11.2%)	5527 (11.1%)	5456 (10.9%)
Weighted	10,318 (20.6%)	10,141 (20.3)%	9,884 (19.8)%
total			

LESIA

$\delta_{back,k}$	depth	Binary Mask	Gradient Mask	Gaussian Mask
[mag]	[%]	(I + II) = (V + VI)	(I + III)	(V + VII)
10-3	9.2×10^{-2}	1,632	1,839 (+12.7%)	2,465 (+51.0%)
10-2	9.2×10^{-1}	9,208	10,753 (+16.8%)	13,075 (+42.0%)
10 ⁻¹	8.8	36,390	44,476 (+22.2%)	51,644 (+41.9%)
0.8	52.1	82,629	105,029 (+27.1%)	120,949 (+46.4 %)

Binary Mask (82, 629 sources)

plato

vatoire

(Marchiori et al., 2019, A&A)

LESIA

Byproduct: contamination ratio (for each mask)

Targets – contaminants:

- Magnitude difference: ΔP < 10 mag
- Distance from the target: d < 4 pixels

- WP 323 300 Photometry of imagettes: S. Deheuvels & J. Ballot (IRAP)
- To be applied on all imagettes time-series (P1, P2, P4 samples and a sub-sample of the P5 sample and a sub-sample of the guest observer program sample)
- Almost insensitive to perturbations due to the jitter and the long-term drift (some residual expected, but lower than for the aperture-mask photometry) \rightarrow next slide
- To some extend, the impacts of the contaminant stars can be suppressed \rightarrow next slide

PSF fitting photometry

- Almost insensitive to jitter noise and long-term drift (some residual expected, but lower than for the aperture-mask photometry)
- To some extend, the impacts of the contaminant stars can be suppressed

Reconstructed displacements versus true ones

Contaminant at 1.9 pixel from the target

Free centroids for both stars

PSF fitting photometry

- Almost insensitive to jitter noise and long-term drift (some residual expected, but lower than for the aperture-mask photometry)
- To some extend, the impacts of the contaminant stars can be suppressed

Contaminant at **1.9** pixel from the target

Free centroids for both stars

Contaminant at **0.9 pixel** from the target

Free centroids for both stars

^{plato} Microscanning and PSF

WP 321: Daniel Reese (LESIA)

"Microscanning" technique:

- Series of imagettes acquired during a imposed slow motion of the satellite (pure translation → variations of the transverse angles only)
- Coupled with an **inverse technique**: reconstruction of the PSF at different positions across the field of view

Microscanning and PSF

plato

Microscanning and PSF

- Stellar variability with time-scale longer than 25s should have no impact (TBC) on inversion results
- Telemetry budget allows ~15 000 targets per camera (compression factor 2)
- Contamination is not an issue: taken into account in the inversion

- Targets ("reference stars R2") will all be taken from the P1 sample: about 6, 000 targets per camera
- Star selection can probably be pushed up to magnitude ~ 12 – 13 (→ sample P5)
- Main criteria: brightness !

LESIA

• Sample P4: stars in general too faint (P>12) !

R. Samadi and the DPA-WG – PIC meeting-

Calibration of the Image Geometry Model (IGM)

WP 324: E. Duarte (UOL)

Distortion model (Brown 1971):

$$\begin{split} \begin{pmatrix} x_d \\ y_d \end{pmatrix} &= \begin{pmatrix} x \\ y \end{pmatrix} + \delta_r(x, y, \mathbf{k}) + \delta_t(x, y, \mathbf{p}) \\ \delta_r(x, y, \mathbf{k}) &= \begin{pmatrix} x \\ y \end{pmatrix} (k_1 r^2 + k_2 r^4 + k_3 r^6 + \cdots). \\ \delta_t(x, y, \mathbf{p}) &= \begin{pmatrix} p_1(3x^2 + y^2) + 2p_2 xy \\ p_2(x^2 + 3y^2) + 2p_1 xy \end{pmatrix} (1 + p_3 r^2 + p_4 r^4 \cdots) \end{split}$$

Credit: D. Griessbach

LESIA

Calibration of the Image Geometry Model (IGM)

LESIA

Distortion model (Brown 1971):

$$\begin{aligned} x_d \\ y_d \end{aligned} &= \begin{pmatrix} x \\ y \end{pmatrix} + \delta_r(x, y, \mathbf{k}) + \delta_t(x, y, \mathbf{p}) \\ \delta_r(x, y, \mathbf{k}) &= \begin{pmatrix} x \\ y \end{pmatrix} (k_1 r^2 + k_2 r^4 + k_3 r^6 + \cdots). \\ \delta_t(x, y, \mathbf{p}) &= \begin{pmatrix} p_1(3x^2 + y^2) + 2p_2 xy \\ p_2(x^2 + 3y^2) + 2p_1 xy \end{pmatrix} (1 + p_3 r^2 + p_4 r^4 \cdots). \end{aligned}$$

Residual: < 0.02 pixel (95th percentile)

Credit: D. Griessbach

See PLATO-DLR-PL-TN-0016, i2.1

Calibration of the Image Geometry Model (IGM)

- Requires Center Of Brightness (COB) measurements for a large number of targets: extracted from full CCD images
- Attitude independent method

- Free parameters:
- Focal length
- Distortion coefficients
- CCD positions
- CCD orientations

- Up to ~ 2, 000 reference stars ("R1")
- All taken from sample P1
- Criteria:
 - → Brightness
 - Contamination
 - Homogeneous distribution across FoV

DPA inputs

Task	Inputs
Mask calculation	Magnitude and position (star and contaminant)
$ICRS \to BCRS \to GCRS$	Proper motion, parallax, position
Microscanning	Magnitude and position (star and contaminant)
PSF interpolation	Magnitude, position, color information (star and contaminant)
IGM calibration	Magnitude, position, color information (star and contaminant), binarity flag
Throughput, efficiency map, instrument passband	Magnitude, position, color information (star and contaminant), activity index , variability class

DPA inputs

Quantity	Accuracy (95 th percentile)
Magnitude	TBD (~ 0.05 mag)
Positions	< 10 mas
Color / T _{eff}	TBD (~ 500 K)
Proper motion and parallax	TBD – not critical Gaia accuracy largely enough
Activity index, binarity flag, variability class	TBD

END

