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A. Miglio, J. Montalban, B. Mosser, P. Ventura

WP127: seismic constraints from ageing stars
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ABSTRACT

The Transiting Exoplanet Survey Satellite (TESS) is performing a near all-sky survey for planets
that transit bright stars. In addition, its excellent photometric precision enables asteroseismology
of solar-type and red-giant stars, which exhibit convection-driven, solar-like oscillations. Simulations
predict that TESS will detect solar-like oscillations in nearly 100 stars already known to host planets.
In this paper, we present an asteroseismic analysis of the known red-giant host stars HD 212771 and
HD 203949, both systems having a long-period planet detected through radial velocities. These are the
first detections of oscillations in previously known exoplanet-host stars by TESS, further showcasing
the mission’s potential to conduct asteroseismology of red-giant stars. We estimate the fundamental
properties of both stars through a grid-based modeling approach that uses global asteroseismic param-
eters as input. We discuss the evolutionary state of HD 203949 in depth and note the large discrepancy
between its asteroseismic mass (M⇤ = 1.23±0.15M� if on the red-giant branch or M⇤ = 1.00±0.16M�
if in the clump) and the mass quoted in the discovery paper (M⇤ = 2.1± 0.1M�), implying a change
> 30% in the planet’s mass. Assuming HD 203949 to be in the clump, we investigate the planet’s
past orbital evolution and discuss how it could have avoided engulfment at the tip of the red-giant
branch. Finally, HD 212771 was observed by K2 during its Campaign 3, thus allowing for a preliminary
comparison of the asteroseismic performances of TESS and K2. We estimate the ratio of the observed
oscillation amplitudes for this star to be ATESS

max
/AK2

max
= 0.75±0.14, consistent with the expected ratio

of ⇠ 0.85 due to the redder bandpass of TESS.

Keywords: asteroseismology — planet-star interactions — stars: fundamental parameters — stars:
individual (HD 212771, HD 203949) — techniques: photometric

1. INTRODUCTION

Major advances in stellar interiors physics and evolu-
tion have recently been made possible by asteroseismol-
ogy. This has largely been due to the exquisite space-
based data made available by CNES/ESA’s CoRoT
(Baglin et al. 2009) and NASA’s Kepler/K2 (Borucki
et al. 2010; Koch et al. 2010; Howell et al. 2014) missions.
In particular, asteroseismology has vastly benefited the
study of solar-type and red-giant stars, which exhibit
convection-driven, solar-like oscillations (for a review,
see Chaplin & Miglio 2013). The revolution triggered by
CoRoT and Kepler/K2 is set to continue over the com-
ing decade, with NASA’s TESS (Ricker et al. 2015) and
ESA’s PLATO (Rauer et al. 2014) missions expected to
raise the number of known solar-like oscillators by up to
two orders of magnitude (Huber 2018).
Fueled by the wealth of high-quality seismic data, the

past few years have witnessed an ever-growing e↵ort be-
ing devoted to the development of novel techniques for
the estimation of fundamental stellar properties. The
focus has been placed on uniform data analysis (e.g.,
Davies et al. 2016; Lund et al. 2017b) and stellar model-

⇤
STFC Ernest Rutherford Fellow

ing (e.g., Serenelli et al. 2017; Silva Aguirre et al. 2017;
Nsamba et al. 2018) strategies, as well as on state-of-the-
art optimization procedures that make use of individual
oscillation frequencies (e.g., Metcalfe et al. 2010; Mathur
et al. 2012; Silva Aguirre et al. 2015; Rendle et al. 2019).
These techniques make it possible to estimate precise

properties of large numbers of field stars, for which such
information is sparse. As a result, asteroseismology is
having a profound impact on modern astrophysics, no-
tably on the field of exoplanetary science (Campante
et al. 2018). Characterization of exoplanet-host stars via
asteroseismology allows for unmatched precision in the
absolute properties of their planets (Huber et al. 2013a;
Ballard et al. 2014; Campante et al. 2015; Silva Aguirre
et al. 2015; Lundkvist et al. 2016). Furthermore, aster-
oseismology enables constraints on the spin-orbit align-
ment of exoplanet systems (Chaplin et al. 2013; Huber
et al. 2013b; Campante et al. 2016a; Kamiaka et al. 2019)
as well as statistical inferences on orbital eccentricities
via asterodensity profiling (Sliski & Kipping 2014; Van
Eylen & Albrecht 2015; Van Eylen et al. 2019).
The Transiting Exoplanet Survey Satellite (TESS) is

performing a near all-sky survey for planets that transit
bright stars. Moreover, its excellent photometric preci-
sion, combined with its fine time sampling and long in-
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to constrain stellar physics which is relevant to inferring ages of MS stars

“calibrators"
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age uncertainties of MS stars are typically fractional 
uncertainties of the total MS lifetime

at the MS turnoff systematic uncertainties on age are dominated by:

Y. Lebreton, M.J. Goupil & J. Montalbán: Stellar Models Uncertainties 71

Fig. 43. Synthesis of the ranges of relative age di↵erences at TO, as obtained when

changing one of the inputs of the reference model (defined in Sect. 2.4.3). From left

to right, the case labels on the abscissae correspond to the following changes: [1, 2]

[Fe/H] abundance by ±0.1 dex with respect to solar, [3, 4] initial helium abundance by

±0.03 with respect to solar, [5] �Y/�Z by +3 with respect to solar, [6,7] ↵-elements

enhancement of +0.4 dex at [Fe/H]=0.0 (a) and �1.0 dex (b), [8] solar mixture (AGSS09

vs GN93 mixture), [9] opacity (increased by 10 per cent), [10] conductive opacity, Iben

(1975) vs Cassisi et al. (2007) formalism, [11] �pp reaction rate (decreased by 15 per

cent), [12, 13] �CNO (LUNA vs NACRE rate for the 14N(p, �)15O rate) at [Fe/H]= 0.0

dex (a) and �2.0 dex (c), [14] screening factor in nuclear reaction rates (no screening vs

screening), [15, 16] atomic di↵usion for (d) di↵usion vs no di↵usion and (e) no di↵usion vs

di↵usion with di↵usion velocities increased by 20 per cent, [17, 18] ↵MLT value by ±0.20

dex with respect to solar, [19] prescription for convection (MLT vs FST), [20] convective

core overshooting (↵ov = 0.20 vs no overshooting), [21, 22] rotation (⌦ = 50 km s�1 vs

no rotation), at [Fe/H]=0.0 dex (a) and ⇠ �1.0 dex (b).

exactly the prescribed input physics and constants (blue symbols in Fig. 42), the
di↵erences are reduced by a factor of about two. In this case, we can consider that
the di↵erences between the code results are only due to di↵erences in numerical
treatments, that is the handling of table interpolation (to get the opacity, EoS
outputs, etc.), the methods used to solve the equations, and hidden numerical

Lebreton, Goupil & Montalban 2014
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more examples + numbers in: 
"WP127 seismic constraints from ageing stars; from seismic goals to quantitative needs”
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why

PLATO will live in a landscape enriched by results from CoRoT/Kepler/K2/TESS

however:

Kepler target selection based on CMD cuts + estimates of R (pre Gaia)

Kepler limited exploration of [Fe/H], mass distribution 
dominated by 1.2-1.4 Msun

K2, TESS: limited duration of the observations

Kepler / TESS have observed / are observing G-K giants (intentionally) !
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WP127 happy to help / provide resources to aid the selection

“low-resolution”/ survey 
asteroseismology from TESS 

Gaia

a lot of progress since CoRoT and Kepler, we can be smart about how 
we select stars, ensuring we cover relevant mass / metallicity bins

spectroscopic characterisation of targets 
(e.g. synergies with 4MOST)

PIC
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iterate with core science to define in detail the needs 
(e.g. σage) and  parameter range (M, [Fe/H])

needs for red giant seismology: long-cadence light 
curves (no short-cadence data, no imagette)
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iterate with core science to define in detail the needs 
(e.g. σage) and  parameter range (M, [Fe/H])

needs for red giant seismology: long-cadence light 
curves (no short-cadence data, no imagette)

define suitable&affordable telemetry cost / number of targets 
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high scientific return 

no interference with 
high-priority targets

direct benefit to core science
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add to S5 a carefully selected sample of G-K giants? 
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add to S5 a carefully selected sample of G-K giants? 

GIAMPAOLO’S TALK

… almost there!


