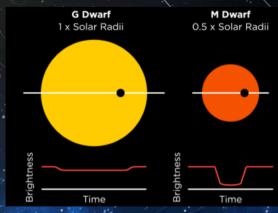
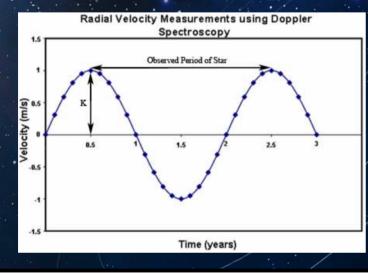


Exoplanet Hosts and the PIC


Don Pollacco University of Warwick

esa


Transit Depth = $(R_p/R_*)^2$

plato

eesa

W semi-amplitude = $(2\pi G/P_{orb})^{1/3} M_p \sin I / (M_*+M_p)^{2/3} 1/V(1-e^2)$

plato Observable catalogue information

GAIA astrometry/position (=> astrometric light curves?) Magnitudes (SED) observed and dereddened over as large a wavelength range as possible colours over as large a wavelength as possible Spectral type + log(g) Reddening Distance

In each case need the parameter error as well

Stellar Parameters directly needed

Obvious ones are:

plato

For solar type stars M_{*} will need to be initially estimated but can be accurately determined from asteroseismology techniques but only if R_{*} is determined through another means.

R_{*} can be determined from GAIA data but needs an accurate measurement of T_{*} (L α R² T⁴)

How accurately can T_{eff} be determined?

Plenty of claims of ±40K, but really.... More realistic values are ~ ±70K – what do the seismologists say to that? What about SED fits + model atmospheres

For late K and M-dwarfs T is even <u>more critical</u>. It is unlikely that asteroseismology will produce estimates for M_{*}

How accurately can T_{eff} be determined for M-dwarfs?

Other Stellar Parameters

Related to T_{*} is the [Fe/H] which we need for sure. But do we need elemental abundances?

Approximate age – We expect age to come from the seismic study for sun-like stars. What about Li as a proxy for age (at least for young stars)? Gyrochronological age?

vsin(i) of stellar spectrum (for Rossiter)

Activity

Activity can make transit detection more difficult and radial velocity measurements challenging.... We proposed an averaging technique in the red book – which certainly will work for some stars.

However, a better understanding of activity will make (in particular) the ground based campaign MUCH more efficient with a knock on effect throughout the programme.

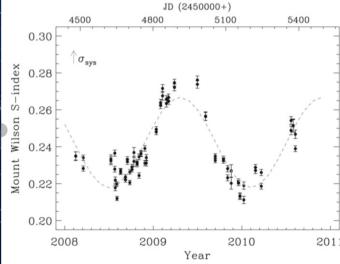
Here are some types of variability/activity:

Short timescale: Rotation cycle (from spots) Flares and plages

Longer timescale: Activity cycle (Irregular variability ?)

IR excess, spectral variations etc In general not really for mature stars

Positional: Proper motion (plus errors)



Activity/Variability II

Variability from TESS & ground based surveys. It is important that surveys are as near contemporaneous with PLATO observations – separations of more than a few years could mislead over expected activity at time of PLATO.

Chromospheric activity – H & K data? Is this an activity cycle? Activity cycles can be short. Proxy for magnetic field (H&K, x-ray)

Huge amount of work

Chromospheric activity measurements of the F8V star ι Hor from the southern HK survey (Metcalfe et al. 2009), showing a clear variation with a cycle period of 1.6 years, the shortest cycle measured for a Sun-like star. Note that the error bars represent only the measurement errors and do not include the systematic uncertainty osys ~ 0.007 (arrow).

Stellar Multiplicity

Cest

Associated companions – Spectroscopic Eclipsing Visual (shared parallax)

Association membership (space motion)

Cluster membership

Known planetary systems

Known planetsary systems – transits: Kepler, K2, TESS, ground-based RV surveys In each case it would be useful to have detection limits

Likelihood of multi-planet system – residuals in RV's?

Environmental considerations

All in/outside the PSF

Distortions of the PLATO PSF

Companions (field)

Variability in background sources

Blending / Companion dilution

A last point:

Given the growing importance of P5 (>245K stars) for statistical studies it is important to define the criteria (Alessandro's talk) or metric/matrixes early and stick to it throughout the target selection

