P1, P2 and P5 samples: target plato selection criteria

Marco Montalto

and the WP130 (PSM) and WP340 (PDC) teams

Università di Padova

PLATO input catalog (PIC) workshop (I)

Padova, 24-26 Sep 2019

PIC1.0.0

.

Dwarf and subgiant stars with spectral type between F5 and K7

RAVE DR5 used as proxy to check the region in the CMD occupied by dwarfs and subgiants with spectral type between F5 and K7.

DWARFS: $0.42 < (B-V)_0 \le 1.38 \text{ AND } M_{v,0} \ge 5(B-V)_0 + 0.4 \text{ AND}$ $M_{v,0} < 5(B-V)_0 + 3.5$

Reddening in PIC1.0.0

We used the 3D reddening map presented in <u>Lallement</u> <u>et al. (2018)</u>, <u>Capitanio et al. (2017)</u>

Galactic plane projection

Projection orthogonal to the Galactic plane

Distance distribution in PIC1.0.0

plato

	Q1	Median	Mean	Q3
P5	301	452	489	632
P1	117	178	197	255

Distance relative error distribution in PIC1.0.0

	Q1	Median	Mean	Q3
P5	0.008	0.012	0.022	0.018
P1	0.003	0.005	0.010	0.008

Stellar parameters estimation

plato

Effective temperature distribution in PIC1.0.0

	Q1	Median	Mean	Q3
P5	5600	5917	5843	6178
P1	5688	6009	5910	6241

Radius distribution in PIC1.0.0

plato

	Q1	Median	Mean	Q3
P5	1.15	1.49	1.69	2.02
P1	1.24	1.62	1.85	2.28

Mass distribution in PIC1.0.0

plato

•

Distance distribution in PIC1.0.0 vs SpType

SpType: K, G, F

Distribution of radii relative errors

.

Distribution of effective temperatures relative

errors

Q1	0.034
Median	0.037
Mean	0.038
Q3	0.041

Comparison between PIC1.0.0 and TIC(CTL)v8

T_{eff} PIC1.0.0 vs TICv8

plato

1st Qu.	Median	Mean	3rd Qu.
-148	-80	-99	-16

Radius PIC1.0.0 vs TICv8

plato

1st Qu.	Median	Mean	3rd Qu.
0.009	0.027	0.020	0.035

Mass PIC1.0.0 vs TICv8

1st Qu.	Median	Mean	3rd Qu.
-0.033	0.036	0.047	0.12

From PIC1.0.0 to PIC1.1.0

PIC1.0.0 includes P1, P2 and P5 samples

PIC1.1.0 will include also the P4 sample

From PIC1.0.0 to PIC1.1.0 ...

- 1. Connection between PLATO samples: P1, P2 and P5 limited to K7, while P4 starts from M0.
- 2. The (B-V) color is not appropriate for the M dwarfs selection. It is possible to homogenize sample selection using the $(G_{BP}-G_{RP})$ color.
- 3. Extension of validity range of temperature dependent extinction coefficients
- 4. Extended extinction map
- 5. New calibration of the V-band magnitude for M-dwarfs

 Connection between PLATO samples: P1, P2 and P5 limited to K7, while P4 starts from M0.

plato

Calculate intrinsic color $(G_{BP} - G_{RP})_0$ and split P1, P2, P5 from P4 at $(G_{BP} - G_{RP})_0 = 1.84$

$$(G_{BP}-G_{RP})_{0} < 1.84 \qquad (G_{BP}-G_{RP})_{0} \geq 1.84$$

$$FGK \qquad (M)$$
(F5-M0) (later than M0)

2) The (B-V) color is not appropriate for the M dwarfs selection. It is possible to homogenize sample selecton using the $(G_{BP}-G_{RP})$ color.

TRILEGAL simulation

3) Extension of validity range of temperature dependent extinction coefficients

4) Extended extinction map

Schlegel, Finkbeiner & Davis 1998, ApJ, 500, 525 Schlafly & Finkbeiner 2011, ApJ, 737, 103

$$ho(R,z)=\exp(rac{R_0-R}{h_R}-rac{|z-z_w|}{k_{fl}h_z})$$
 .

$$k_{\rm fl}(R) = 1 + \gamma_{\rm fl} \min(R_{\rm fl}, R - R_{\rm fl})$$
$$z_{\rm w}(R, \phi) = \gamma_{\rm w} \min(R_{\rm w}, R - R_{\rm w}) \sin \phi.$$

Binney et al. 2014, 437, 351

Work in progress ...

Delivery of PIC1.1.0 expected for December 2019 ...

Using TESS to characterize PLATO Targets ...

plato

1.3 million FGKM dwarfs and subgiants multi-sector LCs in Sector 1-Sector 13 TESS **Full Frame Images (FFIs)**

- Search for transiting planets
- Characterization of the variability properties of PLATO targets

Conclusions

PIC1.0.0 contains samples P1, P2 and P5 in the currently defined North PLATO Field (NPF) and South PLATO Field (SPF).

Dwarf and subgiants are selected using intrinsic absolute color magnitude diagrams constructed from Gaia DR2 data.

Interstellar extinction is accounted for using 3D reddening maps.

Stellar parameters of FGK stars are estimated with an overall uncertainty (internal+external) of 4% in stellar temperatures, 7% in stellar radii and 11% in stellar masses.

PIC1.1.0 will be delivered in December 2019 and it will include the first version of the sample P4.