

Previous experiences on COROT (and Kepler)

M. Deleuil Laboratoire d'Astrophysique de Marseille - France

Previous experiences on COROT (and Kepler)

M. Deleuil Laboratoire d'Astrophysique de Marseille - France CoRoT

FOV ~ 3.5°⁻⁻ (half after 2009) 26 stellar fields Observations duration: 21 to 150 days Observing strategy evolved Long runs - Core Program Short runs : stellar physics

 $11 \le r$ -mag ≤ 16 . Photometric precision 700 ppm/hr 169 967 light curves Time sampling : 512 sec or 32 sec 101 083 FGKM V and IV Kepler

FOV ~ $105^{\circ^{\Box}}$ Same field observed for 4 years

 $9 \le Kp-mag \le 15$ Photometric precision 80 ppm/hr 196 468 light curves Time sampling: 30 min or 1 min ~ 100 000 dwarfs

Dedicated preparatory observations -INT/La Palma - WFC (2002 - 2006)

(U) B, V, r, i observations
 14 million stars - 209 deg²
 Completeness: R ~19 - 10 10⁶ stars
 Covered regions pre-selected for possible Long Runs

Dedicated preparatory observations (*U*) *B*, *V*, *r*, *i* observations 14 million stars - 209 deg² Completeness: R ~19 - 10 10⁶ stars

+

2MASS JHK, USNO-A2, USNO-B1, DENIS, TYCHO and UCAC

Dedicated preparatory observations (*U*) *B*, *V*, *r*, *i* observations 14 million stars - 209 deg² Completeness: R ~19 - 10 10⁶ stars +

2MASS JHK, USNO-A2, USNO-B1, DENIS, TYCHO and UCAC

chi2 minimization

SED of 454 stellar single objects

spectral type and luminosity class + E(B-V) of all potential targets ($m_r < 16$)

+ coordinates & magnitudes

+ magnitudes and positions of fainter stars

Deleuil et al., 2009 Damiani et al., 2016

- Multiplicity of fields
 increased of the surface of the sky to be covered
- Exoplanet and stellar physics programs seen as 2 separated programs in the preparatory phase
 - → Targets selection in short runs relied on catalogs only
 - → Strong heterogeinity of the input catalog(s)
 - → Added uncertainties in the input catalog
 - \rightarrow No information on EB or peculiar star in the fields
- No stellar radii provided dwarfs /giants crude separation BUT the number of available photometric windows was much larger than even the more optimistics dwarves counts
- Spectroscopic observations for a well characterization of the dwarf population prior to the launch impossible :
 - unrealistic before Long Runs were decided
 - once the first Long Runs were fixed, proposals (multi fibers observations)
 rejected by ESO TACs before the launch (too risky)
 - → CoRoT spectral classification valid in a statistical way only

Kepler input catalog

g, r, i, z broad band photometry

+ intermediate-band D51 filter (centered on the Mg 1b lines - gravity sensitivity)

+ 2MASS JHK (Brown et al. 2011)

1.6 × 10⁵ stars in a field covering roughly 150 deg² → catalog of 450 000 stars (possible targets)

Kepler input catalog

g, r, i, z broad band photometry

+ intermediate-band D51 filter (centered on the Mg 1b lines - gravity sensitivity)

+ 2MASS JHK (Brown et al. 2011)

1.6 × 10⁵ stars in a field covering roughly 150 deg² → catalog of 450 000 stars (possible targets)

synthetic colors from stellar atmosphere models - Teff , log(g), log(Z) Priors: distributions known for stars in the Sun's neighborhood metallicity, Teff - logg, density of stars as a function of galactic latitude

maximizes the posterior probability

Apparent magnitude Kp and physical parameters : R*, Teff, log(g) and [Fe/H]

4500 K $\leq T_{eff} \leq$ 6500 K, classifications are reliable within about ±200 K and 0.4 dex in log(g)

Spectral classification

Before the launch:

- critical for a proper targets selection
 - identify GKM-type dwarfs from giants
 - good characterization of the background

After the launch:

- critical to
 - help identifying false positives and save follow-up observing time
 - get a first accurate estimate of the planet's parameters
 - carry out reliable planet populations occurences
 - → homogeneity and precision required!

Occurences need : completeness estimate of detection, vetting and follow-up processes and a reliable and accurate knowledge of the stellar population that is observed

Contamination

CoRoT: on-board photometry with pre-defined mask Contamination rate taken into account for the:

- pre-selection of CoRoT fields (very crude)
- Targets selection based on generic masks
- → key element of the Input catalog (#contaminants + contamination rate)

Kepler: stamps downloaded

Contamination

Key element of the data analysis:

- transit depth measurement
- false positives due to:
 - BEB,
 - ghosts generated by smear effect, saturation ...
- → require a good knowledge of the target's environement (faint and bright) and of the CCD

Contamination

Key element of the data analysis:

- transit depth measurement
- false positives due to:
 - BEB,
 - ghosts generated by smear effect, saturation ...
- → require a good knowledge of the target's environement (faint and bright) and of the CCD

Once in operation, new estimate done taking into account:

- the actual photometric mask used for the observation
- the in-flight measured PSFs
- → require a proper calibration instrument corrected image
- → has to be estimated for every quarter

Support to data analysis

Data analysis done by the pipelines and the community will require (or welcome)

- → any complementary information available on :
- the target's properties: its classification(s), EB, variability, activity ...
- its neighboors' properties
- follow-up observations status and results
- → summary on the "observing conditions" : how/when the target has been observed, contamination, photometric mask …
- → summary on the data analysis and outcomes
- photometric precision
- is a planet detected?

. . .

- what are default parameters (e.g. to estimate the transit depth)

CoRoT - ExoDat

Dalasel	5	Criteria						
CoRoT Targets	I	nstrumental settings	Photometry	Stellar properties Astrometry				
Stars in the CoRoT ey	es							
ObsCat		RUN ID		LRc02 ×				
		CCD ID		-				
		WIN ID		Fill Coma Separated Values				
		Chromatic m	ode	Select Some Options				
Parameters by default	If you	Select or unselect export your search r	t the following f esult in a CSV fi	ields to add or remove output columns. le, those are the columns that will be printe	ed out.			
Parameters by default	If you Others catalog ID	Select or unselect a export your search r ObsCat photometry	t the following f esult in a CSV fi	ields to add or remove output columns. le, those are the columns that will be printe	ed out.			
Parameters by default default	If you Others catalog ID	Select or unselect a export your search r ObsCat photometry	et the following f esult in a CSV fi settings	ields to add or remove output columns. le, those are the columns that will be printe Photometry	ed out. Stellar properties			

→ limitations: manpower!

COROT-ID : 102563641

information on the target

About the star

RA [deg] DEC [deg] 100.100127 0.848395

	Magnitudes	
В	16.385±0.106	MEAN
V		
R	15.695±0.375	MEAN
I	15.27	PPMXL
J	14.248±0.03	2MASS
н	13.87±0.035	2MASS
к	13.683±0.046	2MASS

Spectral classification								
Spectral type (SED)	A7							
Luminosity class (SED)	V							
E(B-V) (SED)	0.7							

Contamination L0								
Contamination rate	0							
Numbers of contaminants	43							

-

-

Catalogs references								
PPMXL	<u>3175441872502908095</u>							
USNO-B1	<u>0908-0099919</u>							
TWOMASS	06402402+0050542							
OBS_CAT	<u>102563641</u>							
USNO-A2	<u>0900-03273146</u>							
CMC14	064024.0+005054							
TYCHO2								
CFHT_CAT								

Observation(s)

information on how it was observed: observing mode,

	•			
Kun ID	LRc02			
Ccd ID	E2			
Win ID	1208			
chromatic mode	COLOR			
Template version	851004			
Template ID	122			
V	071			

Contamination L1									
Contamination rate	0.0465								
Contamination error	0.00864								

Download light curves (IAS) CoRoT N1 (account required)

Vo

NASA Exoplanet Archive

ctions

NASA Exoplanet Archive Links										
Planet			Related Overviews		Transit Service					
	Confir	med	Keple	er Pipeline						
KOI-753.01			KOI	Host	KOI-753.01 Transits					

KOI Stellar Properties												
KeplD	KOI	Effective Temperature (K)	Surface Gravity (log ₁₀ (cm/s ²))	Metallicity (dex)	Radius (R _{sun})	Mass (M _{sun})	Age (Gyr)	Provenance	Delivery			
10811496	K00753.01	5648	4.57	null	.83	null	null	KIC	q1_q6_kepler_candidates			
10811496	K00753.01	5853.00±102.00	4.540±0.300	null	0.8800±0.2400	0.9920±0.0460	0.4±3.1	Pinsonneault	q1_q8_koi			
10811496	K00753.01	5853.00 +165.00-171.00	4.544 +0.028-0.265	-0.180±0.260	0.8680 +0.3180-0.0650	0.9610 +0.0970-0.1080	null	stellar_q1_q16	q1_q12_koi			
10811496	K00753.01	5853 +158-176	4.544 +0.044-0.176	-0.18±0.3	0.868 +0.233-0.078	0.961 +0.11-0.121	null	q1_q17_dr25_stellar	cumulative			
10811496	K00753.01	5853 +165-171	4.544 +0.028-0.265	-0.180±0.260	0.868 +0.318-0.065	0.961 +0.097-0.108	null	stellar_q1_q16	q1_q16_koi			
10811496	K00753.01	5853 +165-171	4.544 +0.028-0.265	-0.180±0.260	0.868 +0.318-0.065	0.961 +0.097-0.108	null	stellar_q1_q16	q1_q17_dr24_koi			
10811496	K00753.01	5853 +158-176	4.544 +0.044-0.176	-0.18±0.3	0.868 +0.233-0.078	0.961 +0.11-0.121	null	q1_q17_dr25_stellar	q1_q17_dr25_koi			
10811496	K00753.01	null	null	null	null	null	null	null	q1_q17_dr25_sup_koi			

	Kepler Candidate Transit Results													
КОІ	Disposition	Period (days)	Semi- Major Axis (AU)	Inclination (deg)	Eccentricity	Longitude of Periastron (deg)	Epoch (BKJD)	Depth (ppm)	Duration (hours)	Impact Parameter	Ratio of Distance to Stellar Radius	Ratio of Planet to Stellar Radius	Planet Radius (Earth Radii)	Deliver
K00753.01	CANDIDATE	19.899148±2.1e-05	.14	null	0	null	175.84996±0.00031	9912	1.5428	0.71±0.43	82±22	0.0935±0.0045	8.43	q1_q6_kepler_c
K00753.01	CANDIDATE	19.899147±2.1e-05	.143	89.38	0	null	175.84996±0.00031	9041	1.5428	0.71±0.19	82±22	0.0935±0.0045	9±2.5	¢
K00753.01	NOT DISPOSITIONED	19.899139805±5.92e-06	.1419	80.79	0	null	175.850425±0.00023	11662.1±79.8	1.7896±0.0139	37.4296 ^{+14.27} -4.785	232.8±76.6	36.527225 +14.27341 -4.717459	3462.25 ⁺¹²⁶⁸ -259.3	ď
K00753.01	CANDIDATE	19.89913995±1.494e-05	.1419	88.96	0	null	175.850252±0.000581	10829±171	1.7822±0.0341	0.969 +5.126	53.5±25.7	0.154046 +5.034292 -0.042179	14.6 ^{+3.92} -1.31	c
K00753.01	NOT DISPOSITIONED	19.899139805±5.92e-06	.1419	80.79	0	null	175.850425±0.00023	11662.1±79.8	1.7896±0.0139	37.4296 ^{+14.27} -4.785	232.8±76.6	36.527225 ^{+14.27341} -4.717459	3462.25 ⁺¹²⁶⁸ -259.3	ď
K00753.01	CANDIDATE	19.899139805±5.92e-06	.1419	80.79	0	null	175.850425±0.00023	11662.1±79.8	1.7896±0.0139	37.4296 ^{+14.27} -4.785	232.8±76.6	36.527225 +14.27341 -4.717459	3462.25 ⁺¹²⁶⁸ -259.3	q1_q17
K00753.01	FALSE POSITIVE	19.89913995±1.494e-05	.1419	88.96	0	null	175.850252±0.000581	10829±171	1.7822±0.0341	0.969 +5.126 -0.077	53.5±25.7	0.154046 +5.034292 -0.042179	14.6 ^{+3.92} -1.31	q1_q17
K00753.01	CANDIDATE	19.89913995±1.494e-05	null	null	null	null	175.850252±0.000581	null	null	null	null	null	null	q1_q17_dr2

	TCE Results												
Planet Number	Period (days)	Semi-Major Axis (AU)	Inclination (deg)	Eccentricity	Longitude of Periastron (deg)	Epoch (BKJD)	Depth (ppm)	Duration (hours)	Impact Parameter	Ratio of Distance to Stellar Radius	Ratio of Planet to Stellar Radius	Planet Radius (Earth Radii)	Deliver
1	19.8991±1.0443e-05	0.1433±5.013e-08	89.05±0.09876	0±0	0±0	136.052±0.000296923	1.131e+04±123.9	1.784±0.03766	0.9228±0.04291	55.672247±3.2206159	0.13074631±0.020715658	12.61±1.998	q1_q′
1	19.8991±5.28256e-06	0.1419±2.511e-08	89.05±0.07922	0±0	0±0	136.052±0.000215581	1.145e+04±92.84	1.788±0.0285	0.9242±0.03522	55.64047±2.5253656	0.13242772±0.01730374	12.54±1.639	q1_q′
1	19.8991±4.87766e-06	0.1419±2.319e-08	89.04±0.06945	0±0	0±0	136.052±0.000203517	1.087e+04±77.74	1.782±0.02601	0.9265±0.0297	55.113992±2.2206447	0.12948942±0.014594346	12.27±1.382	q1_q17_dr2
	10 0001 10001 00	0 1 1 1 0 1 0 0 1 0 1	00.00.0.07000	0.0	0.0	400.050.0.000005445	4 000	4 770 0 000 40	0.0000.000440	E4 000704.0 00E400E	0 40050405 0 045000400	10.07.0.010	

We learnt ..

The Input Catalog:

- should provide the information which is required for the targets sele magnitude, spectral types ...
- should be reliable especially in terms physical parameters. Accuracy is mandatory!
 Not only for planets characterization but also for statistical analyses
- A realistic estimate of the contamination is required for the targets selection. But it will have to be updated (and then accurate and precise) with the real data for correct transit depth measurements
- Dedicated ground-based observations cost a lof of efforts should be worthy/required
- Faint stars are painful targets: false positives, poor/impossible characterization
- Selection criteria will have to be carefully prepared

→ Complementary information from existing catalogs will help the data analysis importance of a project DataBase to gather all available information

- 10 bright stars
- 10 background windows

- 11600 faint stars
- 400 background windows

Astero & exoplanets shared the same focal plane but not the same CCDs
 → Different magnitude ranges, different targets, different requirements, different needs ..

→ In 2000 2MASS was released