Industry Collaboration and Innovation

A data-centric approach to server design

What's Driving the Creation of a High Perf. Bus

- Historical silicon technology improvements out of steam
 - More cores on a processor help but you'll never have enough; especially for today's emerging workloads (analytics, artificial intelligence, machine learning, real time analysis, etc.)
- New advanced memory technologies are changing the economics of computing
- Companies realizing the need to off load the microprocessors from routine algorithms to meet demand and improve system performance → Accelerated Computing

Accelerators Require High B/W Interconnects

Heterogeneous systems are attractive for efficient performance

 Each part of an application runs on the best compute location

But there are performance and programmability challenges Desire a highly-capable interconnect between PEs

- Low-latency communication & high data bandwidth
- Fine-grained + bulk data transfers
- Consistent, unified view of memory
- Hardware cache coherence & atomic operations

penCAPI

Industry driving these attributes:

- High performance (move a lot of data quickly; bandwidth, latency)
- Introduction of device coherency requirements
- Able to interface with complex Storage and Memory solutions
- Fulfill various accelerator form factors (e.g., GPUs, FPGAs, ASICs)
- Need to be architecture agnostic to enable the ecosystem growth and adaption

Why OpenCAPI and what is it?

- OpenCAPI is a new 'bottom's up' IO standard
- Key Attributes of OpenCAPI 3.0
 - Open IO Standard Choice for developers and others to contribute and grow an ecosystem
 - Coherent interface Microprocessor memory, accelerator and caches share the same memory space
 - Architecture agnostic Capable going beyond Power Architecture
 - Not tied to Power Architecture Agnostic
 - *High performance No OS/Hypervisor/FW Overhead for Low Latency and High Bandwidth*
 - Ease of programing
 - Ease of implementation with minimal accelerator design overhead
 - Ideal for accelerated computing and SCM including various form factors (FPGA, GPU, ASIC, TPU, etc.)
 - Optimized for within a single system node
 - Supports heterogeneous environment Use Cases
- OpenCAPI 3.1
 - Applies OpenCAPI technology for use of standard DRAM off the microprocessor
 - Based on an Open Memory Interface (OMI)
 - Further tuned for extreme lower latency

	POWER7 Architecture		POWER8 Architecture		POWER9 Architecture		POWER10	
	2010 POWER7 ^{8 cores} 45nm New Micro-	2012 POWER7+ ^{8 cores} 32nm Enhanced	2014 POWER8 12 cores 22nm New Micro-	2016 POWER8 w/ NVLink 12 cores 22nm Enhanced	2017 P9 SO 12/24 cores 14nm New Micro-	2018 P9 SU 12/24 cores 14nm Enhanced	2019+ P9' 12/24 cores 14nm Enhanced	2020+ P10 TBA cores New Micro-
	Architecture New Process Technology	Micro- Architecture New Process Technology	Architecture New Process Technology	Micro- Architecture With NVLink	Architecture Direct attach memory New Process Technology	Micro- Architecture Buffered Memory	Architecture New Memory Subsystem	Architecture New Technology
Sustained Memory Bandwidth	65 GB/s	65 GB/s	210 GB/s	210 GB/s	150 GB/s	210 GB/s	350+ GB/s	435+ GB/s
Standard I/O Interconnect	PCle Gen2	PCle Gen2	PCle Gen3	PCle Gen3	PCIe Gen4 x48	PCle Gen4 x48	PCIe Gen4 x48	PCle Gen5
Advanced I/O Signaling	N/A	N/A	N/A	20 GT/s 160GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	25 GT/s 300GB/s	32 & 50 GT/s
Advanced I/O Architecture	N/A	N/A	CAPI 1.0	CAPI 1.0 , NVLink	CAPI 2.0, OpenCAPI3.0, NVLink	CAPI 2.0, OpenCAPI3.0, NVLink	CAPI 2.0, OpenCAPI4.0, NVLink	ТВА

Statement of Direction, Subject to Change

POWER9 Processor

New Core Microarchitecture

- Stronger thread performance
- Efficient agile pipeline
- POWER ISA v3.0

Enhanced Cache Hierarchy

- 120MB NUCA L3 architecture
- 12 x 20-way associative regions
- Advanced replacement policies
- Fed by 7 TB/s on-chip bandwidth

Cloud + Virtualization Innovation

- Quality of service assists
- New interrupt architecture
- Energy Scale (Workload optimized frequency)

14nm finFET Semiconductor Process

- Improved device performance and reduced energy
- 17 layer metal stack and eDRAM
- 8.0 billion transistors

Leadership Hardware Acceleration Platform

- Enhanced on-chip acceleration
- Nvidia NVLink 2.0: High bandwidth and advanced new features (25G)
- CAPI 2.0: Coherent accelerator and storage attach (PCIe G4)
- OpenCAPI: Improved latency and bandwidth, open interface (25G)

State of the Art I/O Subsystem

• PCIe Gen4 – 48 lanes

High Bandwidth Signaling Technology

- 16 GT/s interface
 - Local SMP
- 25 GT/s Common Link interface
 - Accelerator, remote SMP

POWER9 Core Microarchitecture

OpenCAPI

POWER8 Core

Modular Execution Slices2 x 128b128bSuper-sliceSuper-slice

64b

Slice

↓ ↓

64b

VSU

DW

LSU

 $\downarrow \downarrow$

64b

VSU

DW

LSU

C Exec Slice ↓ ↓ ↓ 64b VSU ↓ ↓ ↓ 0W LSU

POWER9 Core

Re-factored Core Provides Improved Efficiency & Workload Alignment

- Enhanced pipeline efficiency with modular execution and intelligent pipeline control
- Increased pipeline utilization with symmetric data-type engines: Fixed, Float, 128b, SIMD
- Shared compute resource optimizes data-type interchange

POWER9 High Bandwidth I/O

- PCIe Gen4
- **CAPI2.0** ۲
- NVLink 2.0
- **OpenCAPI3.0**

8 and 16Gbps PHY **Protocols Supported**

- PCIe Gen3 x16 and PCIe Gen4 x8
- CAPI 2.0 on PCIe Gen4

12

OpenCAPI

OpenCAPI vs I/O Device Driver – Because minimizing SW Path Length is crucial for performance

Use Cases - A True Heterogeneous Architecture Built Upon OpenCAPI

Datacenter server racks

Industry Usage of SCM

Industry initiatives put SCM where it's easy

Easier from hardware development perspective

penCAPI

- Very limiting for end users
- Allows interfaces to be used as control point

SCM accessed via NVMe:

- Latency advantage reduced by software stack
- Bandwidth limited by PCIe infrastructure
- IOPs limited by CPUs consumed to run NVMe stack

SCM accessed over DDR memory buses:

- Load/Store access model improves over NVMe
 - Eliminates CPU cycles spent on NVMe stack
 - Reduces latency by removing SW pathlength
- Creates DRAM vs SCM configuration tradeoffs
 - Capacity and bandwidth spread across 2 tiers
 - Both tiers are sub-optimized

OpenCAPI & SCM

OpenCAPI

Advantages of OpenCAPI attach for SCM:

Range of Access Semantics

- User-Mode block transfer (like CAPI Flash)
- Memory-like Near Storage

Optimized Latency

- Low Latency hardware path
- Elimination or reduction of software pathlength

Tiered Memory solutions without compromise

- Full DDR DRAM capacity and bandwidth
- Up to 100GB/sec per socket for SCM access

Acceleration Paradigms with Great Performance (OpenCAPI

 \bigstar

OpenCAPI is ideal for acceleration due to Bandwidth to/from accelerators, best of breed latency, and flexibility of an Open architecture

Examples: Machine or Deep Learning such as Natural Language processing, sentiment analysis or other Actionable Intelligence using OpenCAPI attached memory

Examples: Encryption, Compression, Erasure prior to delivering data to the network or storage

Examples: Database searches, joins, intersections, merges Only the Needles are sent to the processor

Examples: Video Analytics, Network Security, Deep Packet Inspection, Data Plane Accelerator, Video Encoding (H.265), High Frequency Trading etc

Examples: NoSQL such as Neo4J with Graph Node Traversals, etc

Why do I care about Virtual Addressing?

- An OpenCAPI device operates in the virtual address spaces of the applications that it supports
 - Eliminates kernel and device driver software overhead
 - Allows device to operate on application memory without kernel-level data copies/pinned pages
 - Simplifies programming effort to integrate accelerators into applications
 - Culmination => Improves Accelerator Performance
- The Virtual-to-Physical Address Translation occurs in the host CPU
 - Reduces design complexity of OpenCAPI accelerator development
 - Makes it easier to ensure interoperability between OpenCAPI devices and different CPU architectures
 - Security Since the OpenCAPI device never has access to a physical address, this eliminates the
 possibility of a defective or malicious device accessing memory locations belonging to the
 kernel or other applications that it is not authorized to access

OpenCAPI and CAPI2 Adapters

Nallatech 250S+

Storage Expansion

- Xilinx US+ KU15P FPGA
- 4 GB DDR4
- PCIe Gen4 x8 and CAPI2
- 4x M.2 Slots
- M.2 to MiniSAS or Oculink for U.2 drive support

CAPI Flash API, Accelerated DB, Burst Buffer

Nallatech 250-SoC

Multipurpose Converged Network / Storage

- Xilinx Zynq US+ ZU19EG FPGA
- 8/16 GB DDR4, 4/8 GB DDR4 ARM
- PCIe Gen4 x8 or Gen3 x16, CAPI2
- 4 x8 Oculink Ports support NVMe, Network, or OpenCAPI
- 2 100Gb QSFP28 Cages

Mellanox Innova2

Network + FPGA

- Xilinx US+ KU15P FPGA
- Mellanox CX5 NIC
- 16 GB DDR4
- PCIe Gen4 x8
- 2 25Gb SFP Cages
- X8 25Gb/s OpenCAPI Support

Network Acceleration (NFV, Packet Classification), Security Acceleration

OpenCAPI and CAPI2 Adapters

AlphaData ADM-9V3

High Performance Reconfigurable Computing

- Xilinx US+ VU3P FPGA
- 16 / 32 GB DDR4
- PCIe Gen3 x16 or Gen4 x8 and CAPI2
- 2 QSFP28 Cages
- X8 25Gb/s OpenCAPI SlimSAS

Data Center, Network Accel, HPC, HFT

AlphaData ADM-9H7

Large FPGA with 8GB HBM

- Xilinx US+ VU37P FPGA + HBM
- 8GB High Bandwidth Memory
- PCIe Gen4 x8 or Gen3 x16, CAPI2
- 2 x8 25 Gb/s OpenCAPI Ports (support up to 50 GB/s)
- 4 100Gb QSFP28 Cages

AlphaData ADM-9H3

Large FPGA with 8GB HBM

- Xilinx Virtex US+ VU33P-3 FPGA + HBM
- 8GB High Bandwidth Memory
- PCIe Gen4 x8 or Gen3 x16, CAPI2
- 1 x8 25 Gb/s OpenCAPI Ports (support up to 50 GB/s)
- 2 100GD QSFP28 Cages ML/DL, Inference, System Modeling, HPC

Bittware XUPVV4

Massive FPGA

- Xilinx US+ VU13P FPGA
- 4 288-pin DIMM Slots, DDR4 or Dual QDR
- Up to 512GB DDR4
- PCIe Gen3 x16, CAPI2 Capable
- 4 100Gb QSFP28 Cages
- 2 x8 25Gb/s OpenCAPI Support

Optimized for Thermal Performance for Large acceleration in the Data Center

CAPI and OpenCAPI Performance

	CAPI 1.0 PCIE Gen3 x8 Measured BW @8Gb/s	CAPI 2.0 PCIE Gen4 x8 Measured BW @16Gb/s	OpenCAPI 3.0 25 Gb/s x8 Measured BW @25Gb/s
128B DMA Read	3.81 GB/s	12.57 GB/s	22.1 GB/s
128B DMA Write	4.16 GB/s	11.85 GB/s	21.6 GB/s
256B DMA Read	N/A	13.94 GB/s	22.1 GB/s
256B DMA Write	N/A	14.04 GB/s	22.0 GB/s

POWER8 Introduced in 2013 POWER9POSecondOpGenerationCl

POWER9 Open Architecture with a Clean Slate Focused on Bandwidth and Latency

Latency Pingpong Test

Simple workload created to simulate communication between system and attached FPGA

 Bus traffic recorded with protocol analyzer and PowerBus traces

 Response times and statistics calculated

Latency Test Results

378ns[†] Total Latency

P9 OpenCAPI

3.9GHz Core, 2.4GHz Nest

298ns[‡]

2ns Jitter

TL, DL, PHY

OpenCAPI

Link

TLx, DLx, PHY (80ns^{II})

Xilinx FPGA VU3P

* Intel Core i7 7700 Quad-Core 3.6GHz (4.2GHz TurboBoost)

† Derived from round-trip time minus simulated FPGA app time

‡ Derived from round-trip time minus simulated FPGA app time and simulated FPGA TLx/DLx/PHYx time

§ Derived from measured CPU turnaround time plus vendor provided HIP latency

I Derived from simulation

 \P Vendor provided latency statistic

CAPI SNAP

What if...

...you could easily program your FPGA using C/C++? ...and get 10x performance* in a few days? ...while operating on data flowing to the server?

	PCI-E FPGA	CAPI FPGA	CAPISNAP
Target Customer	Computer Engineers	Computer Engineers	Programmers
Development time	3-6 Months	3-6 Months	Days
Software Integration	PCI-E Device Driver	LibCXL	Simple API
Source Code	VHDL, Verilog, OpenCL	VHDL, Verilog, OpenCL	C/C++, Go
Coherency, Security	None	POWER + PSL	POWER + PSL

- Targeted for programmers and computer engineers writing RTL
- SNAP framework manages all of the data flow to enable any user to focus on their core computational algorithm to quickly create accelerated IP.

* Compared to running the same C/C++ in software

The CAPI – SNAP concept

OpenCAPI

FPGA becomes a peer of the CPU
 → Action directly accesses host memory

▲ Manage server threads and actions
 SNAP
 ▲ Manage access to IOs (memory, network)
 ▲ Action easily accesses resources

Gives on-demand compute capabilities Gives direct IOs access (storage, network) → Action **directly** accesses external resources

Compile Action written in C/C++ code Optimize code to get performance → Action code can be ported efficiently

Best way to **offload/accelerate** a C/C++ code with:

- Quick porting

CAPI

FPGA

Vivado

HLS

- Minimum change in code
- Better performance than CPU

Today

- CAPI 1.0 (POWER8)
- CAPI 2.0 (POWER9)
- OpenCAPI 3.0 (POWER)

https://github.com/open-power/snap

P 2,3	06 commits	ک 22 branches	S 29 releases	La contributors	دية Apache-2.0
CAPI SNAF	P Framework Har	dware and Software			
<> Code	Issues 17	1) Pull requests 5	III Projects 2 III Wiki	Insights	
📮 open-po	ower / snap			O Watch	★ Star 57 ¥ Fork 41