
Docker and containerization
- an introduction -

Stefano Alberto Russo
stefano.russo@inaf.it

INAF ICT Workshop
Milan, 21 October 2019

Talk repository: https://github.com/sarusso/ModernSoftwareDevelopment (b141773)

mailto:stefano.russo@inaf.it
https://github.com/sarusso/ModernSoftwareDevelopment

About me
BSc in Computer Science with a thesis on High Performance Computing at SISSA

MSc in computational physics with a thesis on Big Data at CERN

CERN research fellow working on new computing and data analysis methodologies

Then, 5 years in startups.

- Core team member of an IoT energy metering and analytics startup,
- Joined Entrepreneur First, Europe’s best deep tech startup accelerator
- ..and co-founded Sharpsense (analysed the Genoa Morandi Bridge data after the collapse)

Meanwhile: always kept the link with academia.

- Lectured on Big Data for scientific computing at the Master In High Performance Computing (SISSA and UN’s ICTP),
- Worked on data processing pipelines for EUMETSAT,
- Held seminars about “Modern Software Development” in universities.

Now: back into research (INAF).

A note on the startup world

Tech startups
Use new technologies
 → R&D is not the core business

Examples:
- Facebook
- AirBnB
- Amazon
- Twitter
- Uber
- ..and all the “yet another App”.

Deep Tech startups
Develop new technologies
 → R&D is the core business

Examples:
- Google
- Deep Mind
- Tesla
- SpaceX
- Human Longevity
- ..and all the university spin-offs.

A note on the startup world

A note on the startup world

1) Startups are extremely resource-constrained

2) Time is a precious asset

3) Deep tech startups have complex codebases

 1 + 2 + 3 = You really don’t want to fall in a “dependency hell”

The “dependency hell” problem
Mike wants to install a new software.

Mike cannot find a precompiled version that works with his OS and/or libraries.

Mike ask/Google for help and get some basic instructions - like “compile it”.

Mike starts downloading all the development environment, and soon realizes that
he needs to upgrade (or downgrade!) some parts of his main Operating Systems.

During this process, something goes wrong.

Mikes spends an afternoon fixing his own OS, and all the next day in trying to
compile the software. Which at the end turns out not to do what he wanted.

The “dependency hell” problem: solutions spectrum

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

The “dependency hell” problem: solutions spectrum

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

Proper requirements
- Carefully keep track of what libraries/OS features are used in development

and report them on the documentation, for each release.

- Prone to human error we stop here.

Next!

Virtual environments
- Work in a reproducible environment where libraries are the same for

developers and for users. Each release has a virtual environment definition.

- Requires the user to set up and activate its own environment,
and works only with some libraries (i.e. Python),

- Not a comprehensive solution and prone to human error we stop here.

Next!

Statically linked binaries
- Works only for compiled or compilable languages we stop here.

Next!

The “dependency hell” problem: solutions spectrum

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

Virtual Machines with hardware emulation

- Well… a bit of over-engineering. we stop here.

Next!

Virtual Machines
- Works out-of-the box and does not touch the main OS;

- Allows to quickly test a given software / library;

- Need to download a (big) pre-built, trusted image (no “source” code);

- Requires pre-allocating dedicated memory at startup, and an entire boot;

- Not suitable for much more than just giving the software a try;

- You will not find much software packaged in this way.

cons > pros we stop here.

 ... but we are on the right path. We want this kind of insulation!

The “dependency hell” problem: solutions spectrum

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

Containerization
You might think about it as a Virtual Machine in first approximation

→ but keep in mind that they are two completely different things

Guest (VM) OS

Virtual Machines Engine (Hypervisor)

Host OS

Dependencies

Guest (VM) OS Guest (VM) OS

Dependencies Dependencies

Application 2Application 1 Application 3

Hardware

Containerization Engine

Container Container Container

Host OS

Dependencies Dependencies

Application 2Application 1 Application 3

Hardware

Virtual Machine Containerization

Containerization: the Virtual Machines alternative
The idea is to insulate a single process from your Operating System, and to:

- Let it live in its own space, including its own network;

- Let it have its own File System with its own libraries;

- Allow to natively access hardware without virtualization;

- Avoid booting an entire Virtual machine and to pre-allocate dedicated
memory.

Different containerization solutions put more or less focus on these points

The “dependency hell” problem: solutions spectrum

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

Singularity
(closer to a process)

Docker
(closer to a VM)

Docker
- Modern containerization solution, open source

- Extremely popular, the “de facto” containerization standard

- Incremental File System

- Plenty of software on Docker Hub

- Native on Linux

- Almost native on Macs post-2011 and Windows 10 (through a light VM)

Docker Vs Singularity

Docker Singularity

IT Industry standard Scientific Computing

Running containers are seen as (micro)services Running container are seen as processes

Containers have an IP address by default Containers do not have an IP address by default

Extensive support for networking between containers Limited or no support for networking between containers

Basically requires root access Build as root, run as user

Limited HPC and parallelisation support Full support for HPC use cases

Requires a daemon to orchestrate Command line utility

Loads of orchestrators (docker-compose, kubernetes..) First alpha stage orchestrator (singularity-compose)

Docker Vs Singularity (more technical)

Docker Singularity

docker run:
Run a command in a new container

singularity run:
 Run the user-defined default command
 within a container

docker exec:
Run a command in a running container

singularity exec:
 Run a command within a container

- singularity instance:
 Manage containers running as services

Filesystem at runtime: completely insulated by default,
use volumes to bind folders

Filesystem at runtime: only partially insulated by default, the
directories $HOME, /tmp, /proc, /sys, and /dev are mounted.

Environment at runtime: from scratch Environment at runtime: the environment of the host

Network: the one of Docker engine, use --net-host to
use the host network

Network: the one of the host

Tutorial start
We will now have a look about how to pull, run, build and share Docker containers

- You can use the Examples/step_by_step.sh script to follow more or less
the same steps

$./step_by_step.sh

Will now pull gcc 5.4 Docker container

Command: docker pull gcc:5.4

Press enter to execute...

Gcc on Docker Hub

Gcc on Docker Hub (downloading)

- You are downloading a minimalistic Linux distribution (Debian Jessie, as we will see later) on which
has been installed gcc (version 5.4).

- Thanks to Docker’s incremental file system, another container based on Debian Jessie will not
require to download/store it again.

$ docker pull gcc:5.4

5.4: Pulling from library/gcc

aa18ad1a0d33: Extracting [================================>] 33.98 MB/52.6 MB

15a33158a136: Download complete

f67323742a64: Download complete

c4b45e832c38: Downloading [===================>] 51.59 MB/134.7 MB

e5d4afe2cf59: Download complete

4c0020714917: Downloading [=======>] 30.59 MB/200.4 MB

b33e8e4a2db2: Download complete

c8dae0da33c9: Waiting

Gcc on Docker Hub (downloaded)
$ docker pull gcc:5.4

5.4: Pulling from library/gcc

aa18ad1a0d33: Pull complete

15a33158a136: Pull complete

f67323742a64: Pull complete

c4b45e832c38: Pull complete

e5d4afe2cf59: Pull complete

4c0020714917: Pull complete

b33e8e4a2db2: Pull complete

c8dae0da33c9: Pull complete

Digest: sha256:e6ef7f0295b9d915f8521de360e30803bf8561cfb9cea8e320aa66761be8ec42

Status: Downloaded newer image for gcc:5.4

Terminology warning:

- image: a “file” from which you can run a container
- container: an “entity” run from an image

Run Gcc (5.4) with Docker
$ docker run gcc:5.4 gcc -v

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-linux-gnu/5.4.0/lto-wrapper

Target: x86_64-linux-gnu

Configured with: /usr/src/gcc/configure --build=x86_64-linux-gnu --disable-multilib

--enable-languages=c,c++,fortran,go

Thread model: posix

gcc version 5.4.0 (GCC)

$

Share files with a Docker container: the volumes
The container is by definition insulated from your main (host) Operating System

- But you can make some folders visible from the containers as volumes (think
about an usb pendrive)

- Just append “-v your_os_folder:path_inside_the_container” to docker command

Docker Engine

Container Container Container

Host OS

Dependencies Dependencies

Application 2Application 1 Application 3

Hardware

We are creating a bridge

Compile your code with Gcc (5.4)

#include<stdio.h>

int main()
{
 printf("I run a very complex simulation and the result is 42\n");
}

Our test.c code:

Compile your code with Gcc (5.4)
$ docker run -v$PWD:/data gcc:5.4 gcc -o /data/Test/test.bin --verbose /data/Test/test.c

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-linux-gnu/5.4.0/lto-wrapper

Target: x86_64-linux-gnu

Configured with: /usr/src/gcc/configure --build=x86_64-linux-gnu --disable-multilib

--enable-languages=c,c++,fortran,go

Thread model: posix

gcc version 5.4.0 (GCC)

COLLECT_GCC_OPTIONS='-o' '/data/Test/test.bin' '-v' '-mtune=generic' '-march=x86-64

[...]

$

Run your code compiled with Gcc (5.4)

$ Test/test.bin

-bash: Test/test.bin: cannot execute binary file

$ docker run -v$PWD:/data gcc:5.4 /data/Test/test.bin

ste@Stes-MacAir:Examples (master) $

I just ran a very complex simulation and the result is 42

On your computer → no!

Inside the container → yes!

Entering in the Gcc (5.4) container

Execute a (bash) shell in the container

List the root directories

$ docker run -t -i gcc:5.4 bash
root@b9c1414bab3d:/#

root@b9c1414bab3d:/# ls

bin boot dev etc home lib lib64 media mnt opt proc root run sbin srv

sys tmp usr var

You are root!

Entering in the Gcc (5.4) container

List running processes

Get the container IP address

root@b9c1414bab3d:/# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 1 13:54 pts/0 00:00:00 bash

root 8 1 0 13:54 pts/0 00:00:00 ps -ef

root@b9c1414bab3d:/# ip addr show dev eth0
 [...]

 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 [...]

Entering in the Gcc (5.4) container

When you exit a container, you lose every change to the container File System

List running Docker containers (on another shell of your computer)
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b9c1414bab3d gcc:5.4 "bash" 3 seconds ago Up 1 second friendly_goodall

Exit the shell, and therefore the container
root@b9c1414bab3d:/# exit
$

The Dockerfile

The Dockerfile
- The Dockerfile is what defines a Docker Container. Think about it as its

source code.
- When you build it, it generates a Docker Image. When you run a Docker

Image, this “becomes” a Docker Container, as mentioned before.

FROM <base image>

RUN <a setup command>

COPY <source file/folder on your OS> <dest file/folder in the container>

RUN <another setup command>

What is the Gcc (5.4) container built from?
There is NO black magic in Docker.

Now that we know that its source code is in the Dockerfile, we can see on
what the Gcc (5.4) image is built from.

What is the Gcc (5.4) container built from?

What is the Gcc (5.4) container built from?

What is the Gcc (5.4) container built from?

What is the Gcc (5.4) container built from?

What is the Gcc (5.4) container built from?

Your first Docker container
We will now include and compile your test code directly from a Dockerfile

FROM gcc:5.4

Add the test code

COPY test.c /opt

Compile the test code

RUN gcc -v -o /opt/test.bin /opt/test.c

Your first Docker container
Let’s now build it with“test.c” and the Dockerfile files in a folder named “Test”:

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Running in c839379f1fbe

Using built-in specs.

COLLECT_GCC=gcc

[...]

Removing intermediate container c839379f1fbe

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

Your first Docker container
..and we can run it:

$ docker run testcontainer /opt/test.bin

I just ran a very complex simulation and the result is 42

Your first Docker container

$ docker save testcontainer > testcontainer.tar

..and share it (old school):

$ docker load < testcontainer.tar

Your first Docker container
..and share it (Docker Hub):

$ docker tag testcontainer sarusso/testcontainer

$ docker push sarusso/testcontainer

The push refers to repository [docker.io/sarusso/testcontainer]

4e139ce93449: Pushed

8e5d12c6cc1e: Pushed

531d0aa62df3: Mounted from library/gcc

2ac9aba62fc1: Mounted from library/gcc

4e778218c153: Mounted from library/gcc

8f816dba9ff6: Mounted from library/gcc

7381522c58b0: Mounted from library/gcc

ecd70829ec3d: Mounted from library/gcc

d70ce8b0dad6: Mounted from library/gcc

18f9b4e2e1bc: Mounted from library/gcc

latest: digest: sha256:21563d1b6645af4cf73f01cc471b5f1a8bb902f7f1903bac4b9b878433eecf5e size: 2421

Versioning: hashes, tags, etc.
If we rebuild the testcontainer, the caching jumps in. It takes few seconds.

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> Using cache

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Using cache

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

..this is possible thanks to version hashes

Versioning: hashes, tags, etc.
- An hash is the result of applying an hash function

- An hash function takes some input and generates a fixed-size output, like:

47e0b9046c241cc4653b876c2a8ab01341c00754

- A good hash function allows to virtually never have the same hash from
different inputs.

- In both Git and Docker the input is your code, and and hash represents a
unique (saved) state. Or, a particular point in your codebase “history”.

- Then, it happens that hashes can be linked together, forming hierarchies.

- A tag is a friendly name for an hash.

Versioning: hashes, tags, etc.
Let’s have a look at the hashes for the first and second build

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Running in c839379f1fbe

Using built-in specs.

COLLECT_GCC=gcc

[...]

Removing intermediate container c839379f1fbe

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> Using cache

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Using cache

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

Versioning: hashes, tags, etc.
- Both Git and Docker implement versioning with hashes, which are fully

deterministic, unlike version (incremental) numbers.

- In the Docker ecosystem everything is versioned

- For practical use, also the short hashes are allowed (and commonly used),
which are the first 7 characters for Git (i.e. “47e0b90”) and the first 12 for Docker.

- If by chance two hashes in the system starts with the same short hash, you will
be required to enter one more character or the full hash.

p.s. the tag “5.4” for the gcc
Docker container is actually
saying that the tag is “gcc:54”.
Sorry for this! :(

The hash for the tag “gcc:5.4”
tag is “b87db7824271”

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Running in c839379f1fbe

Using built-in specs.

COLLECT_GCC=gcc

[...]

Removing intermediate container c839379f1fbe

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

One step back

Where do you save your code and Dockerfile?

Where do you save your code and Dockerfiles?

..on a versioning system.

Where do you save your code and Dockerfiles?

..on a versioning system.

There is no other alternative.

Do not work without versioning.

Seriously, don’t.

 → Use Dropbox or Google Drive if you think that more
 professional versioning tools, like Git, are an overkill.

The importance of versioning with Docker
Docker allows to have everything up and running, including dependencies etc.
with a single command.

This command trigger a build with a given set of dependencies (the ones you
wrote to install in the Dockerfile)

Over time, you will probably make changes in your Dockerfiles and in your code.

If you use a versioning system, you can jump back in time to a particular
version/hash, build it, and it will run exactly as it was running at that time

For managing multiple container versions simultaneously you can use tags

The importance of versioning with Docker
Docker allows to have everything up and running, including dependencies etc.
with a single command.

This command trigger a build with a given set of dependencies (the ones you
wrote to install in the Dockerfile)

Over time, you will probably make changes in your Dockerfiles and in your code.

If you use a versioning system, you can jump back in time to a particular
version/hash, build it, and it will run exactly as it was running at that time

For managing multiple container versions simultaneously you can use tags

Recap on Docker

1) With Docker,your code will build and run in the exact same way, on every
operating system, virtually forever.

2) If you want to give the code that generates the magic “42” answer to someone,
they will just need two commands* to have everything up and running:

docker build or pull

docker run

*plus some arguments

Personal take
- A versioning systems protects you first of all from yourself

- Using Docker with a versioning system allows to reach full reproducibility,
starting from a repository name and a short hash for a point in time/version.

- Using them even for small personal/research projects helps a lot

- If someone gives you a code without version control or that requires
dependencies:

- First, put it under version control;

- Second, create a Dockerfile with all the commands and dependencies you will need to set it up
(which you will need anyway, by the way).

- ..and no, tomorrow you will not remember how you did. No one does. :)

How about GUI programs?

Running a GUI program inside a container requires either a X11 server outside the
container and forwarding the X11 socket, or other resorts like using VNC.

- Having a X11 server running outside a container and forward the X11 socket
inside the container: ok on Linux, tricky on Mac, hard on Windows

- Better: embed a VNC server in the container and require just a VNC client

- Best: embed a WebVNC server in the container and require just a browser.

Practical example: Astrocook
A thousand ways to cook a spectrum

Practical example: Astrocook
A thousand ways to cook a spectrum

Typical Scientific Code that requires
non-trivial dependencies.

It has a GUI, meaning that it requires
even other “implicit” dependencies

Ok, let’s start to figure out how to install the dependencies.. on my 4 years old OS.

… or ...

Practical example: Astrocook

..and then open a browser on localhost:8590

$ docker pull sarusso/astrocook

$ docker run -v$PWD:/data -p8590:8590 sarusso/astrocook

Practical example: Astrocook

..and then open a browser on localhost:8590

$ docker build -f containers/Docker/Dockerfile . -t astrocook

$ docker run -v$PWD:/data -p8590:8590 astrocook

Clone the Astrocook repo, then:

Practical example: Astrocook

Minimal
Desktop
(fluxbox)

Astrocook
GUI!

My
browser

Practical example: Astrocook

Scientific
stuff.

 Hope it helps :)

Questions?

Stefano Alberto Russo
stefano.russo@inaf.it

Talk repository: https://github.com/sarusso/ModernSoftwareDevelopment (b141773)

mailto:stefano.russo@inaf.it
https://github.com/sarusso/ModernSoftwareDevelopment

