Docker and containerization
- an introduction -

INAF ICT Workshop
Milan, 21 October 2019

Stefano Alberto Russo
stefano.russo@inaf.it

Talk repository: https:/github.com/sarusso/ModernSoftwareDevelopment (b141773)

mailto:stefano.russo@inaf.it
https://github.com/sarusso/ModernSoftwareDevelopment

About me

BSc in Computer Science with a thesis on High Performance Computing at SISSA
MSc in computational physics with a thesis on Big Data at CERN
CERN research fellow working on new computing and data analysis methodologies

Then, 5 years in startups.

- Core team member of an loT energy metering and analytics startup,
- Joined Entrepreneur First, Europe’s best deep tech startup accelerator
- ..and co-founded Sharpsense (analysed the Genoa Morandi Bridge data after the collapse)

Meanwhile: always kept the link with academia.

- Lectured on Big Data for scientific computing at the Master In High Performance Computing (SISSA and UN’s ICTP),
- Worked on data processing pipelines for EUMETSAT,
- Held seminars about “Modern Software Development” in universities.

Now: back into research (INAF).

A note on the startup world

Tech startups

Use new technologies
— R&D is not the core business

Examples:
- Facebook
- AirBnB
- Amazon
- Twitter
- Uber
- ..and all the “yet another App”.

Deep Tech startups

Develop new technologies
— R&D is the core business

Examples:
- Google
- Deep Mind
- Tesla
- SpaceX
- Human Longevity
- ..and all the university spin-offs.

A note on the startup world

€« C A [ogtnai

A Quantum Leap in Drug Discovery

€« C f [} open-cosmos.com

‘ Open Cosmos

€« C fn resurgo.com

What we are doing

With our patent-pending technology

Generative Tensorial Networks ™

We advance cutting-edge quantum physics and machine learning methods to enable the next

o

SIMPLE AND AFFORDABLE SPACE MISSIONS "‘
Genomics Artificial Unique insights

Intelligence &

A note on the startup world

1) Startups are extremely resource-constrained
2) Time is a precious asset

3) Deep tech startups have complex codebases

1+ 2+ 3 = You really don’t want to fall in a “dependency hell”

The “dependency hell” problem

Mike wants to install a new software.
Mike cannot find a precompiled version that works with his OS and/or libraries.
Mike ask/Google for help and get some basic instructions - like “compile it”.

Mike starts downloading all the development environment, and soon realizes that
he needs to upgrade (or downgrade!) some parts of his main Operating Systems.

During this process, something goes wrong.

Mikes spends an afternoon fixing his own OS, and all the next day in trying to
compile the software. Which at the end turns out not to do what he wanted.

The “dependency hell” problem: solutions spectrum

[1] 11

Proper Virtual Statlca”y
requirements environments linked
binaries

Containerization VMs VMs with
hardware
emulation

The “dependency hell” problem: solutions spectrum

ES 00092
I 1 1 I

Proper Virtual Statlca”y
requirements environments linked
binaries

Containerization VMs VMs with
hardware
emulation

Proper requirements

- Carefully keep track of what libraries/OS features are used in development
and report them on the documentation, for each release.

- Prone to human error ——)> we stop here.

Next!

Virtual environments

- Work in a reproducible environment where libraries are the same for
developers and for users. Each release has a virtual environment definition.

- Requires the user to set up and activate its own environment,
and works only with some libraries (i.e. Python),

- Not a comprehensive solution and prone to human error ——> we stop here.

Next!

Statically linked binaries

- Works only for compiled or compilable languages ——> we stop here.

Next!

The “dependency hell” problem: solutions spectrum

H

Proper

requirements

. ntainerization
environments Containerizatio

| |

VMs VMs with
hardware
emulation

Virtual Machines with hardware emulation

- Well... a bit of over-engineering. ——> we stop here.

Next!

Virtual Machines

Works out-of-the box and does not touch the main OS;

- Allows to quickly test a given software / library;

- Need to download a (big) pre-built, frusted image (no “source” code);

- Requires pre-allocating dedicated memory at startup, and an entire boot;
- Not suitable for much more than just giving the software a try;

- You will not find much software packaged in this way.

cons > pros ——> we stop here.

... but we are on the right path. We want this kind of insulation!

The “dependency hell” problem: solutions spectrum

H

Proper

requirements

environments

[

Containerization

| |

VMs VMs with
hardware
emulation

Containerization

You might think about it as a Virtual Machine in first approximation

— but keep in mind that they are two completely different things

Virtual Machine

Containerization

Application 1 Application 2 Application 3
Dependencies Dependencies Dependencies
| Guest(VM)OS | | Guest(VM)OS | | Guest(VM)OS |

Virtual Machines Engine (Hypervisor)

Host OS

Containerization Engine

Hardware

Container Container Container
Application 1 Application 2 Application 3
Depen«.ij:encies Dependencies
"""""""""" " hestos
Hardware

Containerization: the Virtual Machines alternative

The idea is to insulate a single process from your Operating System, and to:

Let it live in its own space, including its own network;
Let it have its own File System with its own libraries;
Allow to natively access hardware without virtualization;

Avoid booting an entire Virtual machine and to pre-allocate dedicated
memory.

Different containerization solutions put more or less focus on these points

The “dependency hell” problem: solutions spectrum

[

Containerization VMs

Singularity Docker

(closer to a process) (closer to a VM)

Docker

- Modern containerization solution, open source

- Extremely popular, the “de facto” containerization standard
- Incremental File System

- Plenty of software on Docker Hub

- Native on Linux

- Almost native on Macs post-2011 and Windows 10 (through a light VM)

Docker Vs Singularity

Docker Singularity
IT Industry standard Scientific Computing
Running containers are seen as (micro)services Running container are seen as processes
Containers have an IP address by default Containers do not have an IP address by default
Extensive support for networking between containers Limited or no support for networking between containers
Basically requires root access Build as root, run as user
Limited HPC and parallelisation support Full support for HPC use cases
Requires a daemon to orchestrate Command line utility
Loads of orchestrators (docker-compose, kubernetes..) First alpha stage orchestrator (singularity-compose)

Docker Vs Singularity (more technical)

Docker

Singularity

docker run:
Run a command in a new container

singularity run:
Run the user-defined default command
within a container

docker exec:
Run a command in a running container

singularity exec:
Run a command within a container

singularity instance:
Manage containers running as services

Filesystem at runtime: completely insulated by default,
use volumes to bind folders

Filesystem at runtime: only partially insulated by default, the
directories $HOME, /tmp, /proc, /sys, and /dev are mounted.

Environment at runtime: from scratch

Environment at runtime: the environment of the host

Network: the one of Docker engine, use --net-host to
use the host network

Network: the one of the host

Tutorial start

We will now have a look about how to pull, run, build and share Docker containers

- You can use the Examples/step by step.sh script to follow more or less
the same steps

$./step_by_step.sh
Will now pull gcc 5.4 Docker container

Command: docker pull gcc:5.4
Press enter to execute...

Gcce on Docker Hub

eoce # library/qacc - Docker Hu'

& = C fi |8 hups://hub.docker.com/_/gcc/

'===‘ Q Search Explore Help Sign in

OFFICIAL REPOSITORY

goe >x

Repo Info Tags
Short Description Docker Pull Command | &)
The GNU Compiler Collection is a compiling system that supports several languages. docker pull gce

Full Description

Supported tags and respective Dockerfile links

e 4.9.4, 4.9, 4 (4.9/Dockerfile)

e 5.4.0, 5.4, 5 (5/Dockerfile)

e 6.4.9, 6.4, 6 (6/Dockerfile)

e 7.2.0, 7.2, 7, latest (7/Dockerfile)

Gcce on Docker Hub (downloading)

$ docker pull gcc:5.4

5.4: Pulling from library/gcc

aal8adla@d33: Extracting [================================>] 33.98 MB/52.6 MB
15a33158a136: Download complete

£67323742a64: Download complete

c4b45e832c38: Downloading [===================>] 51.59 MB/134.7 MB
e5d4afe2cf59: Download complete

4c0020714917: Downloading [=======>] 30.59
b33e8e4a2db2: Download complete

c8dae@da33c9: Waiting

- You are downloading a minimalistic Linux distribution (Debian Jessie, as we will see later) on which
has been installed gcc (version 5.4).

- Thanks to Docker’s incremental file system, another container based on Debian Jessie will not
require to download/store it again.

Gcce on Docker Hub (downloaded)

$ docker pull gcc:5.4

5.4: Pulling from library/gcc
aal8adlaed33:
15a33158a136:
67323742a64:
c4b45e832¢38:
e5d4afe2cf59:
4c0020714917:
b33e8e4a2db2:
c8dae@da33c9:

Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull

complete
complete
complete
complete
complete
complete
complete
complete

Digest: sha256:e6ef7f0295b9d915f8521de360e30803bf8561cfb9cea8e320aab6761be8ec4?2
Status: Downloaded newer image for gcc:5.4

image: a “file” from which you can run a container
container: an “entity” run from an image

Run Gcc (5.4) with Docker

$ docker run gcc:5.4 gcc -v

Using built-in specs.

COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-1linux-gnu/5.4.0/1to-wrapper
Target: x86_64-1inux-gnu

Configured with: /usr/src/gcc/configure --build=x86_64-1linux-gnu --disable-multilib
--enable-languages=c,c++,fortran,go

Thread model: posix

gcc version 5.4.0 (GCC)

$

Share files with a Docker container: the volumes

The container is by definition insulated from your main (host) Operating System

- But you can make some folders visible from the containers as volumes (think
about an usb pendrive)
- Just append “-v your_os_folder:path_inside _the container” to docker command

Docker Engine

Container Container Container

——

Application1 | ''| Applicaton2 ||| Application 3

We are creating a bridge Q Dependencies /| Dependencies | |
Host OS -

Hardware

Compile your code with Gcec (5.4)

Our test.c code:

#tinclude<stdio.h>

int main()
{

printf("I run a very complex simulation and the result is 42\n");

}

Compile your code with Gcec (5.4)

$ docker run -v$PWD:/data gcc:5.4 gcc -o /data/Test/test.bin --verbose /data/Test/test.c
Using built-in specs.

COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-1linux-gnu/5.4.0/1to-wrapper
Target: x86_64-1inux-gnu

Configured with: /usr/src/gcc/configure --build=x86_64-1linux-gnu --disable-multilib
--enable-languages=c, c++,fortran,go

Thread model: posix

gcc version 5.4.0 (GCC)

COLLECT_GCC_OPTIONS='-0o"' '/data/Test/test.bin' '-v' '-mtune=generic' '-march=x86-64
[...]

$

Run your code compiled with Gcce (5.4)

On your computer — no!

$ Test/test.bin
-bash: Test/test.bin: cannot execute binary file

Inside the container — yes!

$ docker run -v$PWD:/data gcc:5.4 /data/Test/test.bin
ste@Stes-MacAir:Examples (master) $
I just ran a very complex simulation and the result is 42

Entering in the Gcce (5.4) container

Execute a (bash) shell in the container

$ docker run -t -i gcc:5.4 bash
root@b9c1414bab3d: /#

=

List the root directories

root@b9cl1414bab3d: /# 1s
bin boot dev etc home 1lib 1ib64 media mnt
sys tmp usr var

opt

proc

root

run

sbin

srv

Entering in the Gcce (5.4) container

List running processes

root@b9cl414bab3d: /# ps -ef

UibD PID PPID C STIME TTY TIME CMD
root 1 © 1 13:54 pts/0 00:00:00 bash
root 8 1 © 13:54 pts/e 00:00:00 ps -ef

Get the container IP address

root@b9c1414bab3d:/# ip addr show dev ethe
[...]
inet 172.17.0.2/16 brd 172.17.255.255 scope global etho
[...]

Entering in the Gcce (5.4) container

List running Docker containers (on another shell of your computer)

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b9c1414bab3d gcc:5.4 "bash" 3 seconds ago Up 1 second friendly goodall

Exit the shell, and therefore the container

root@b9c1414bab3d: /# exit
$

When you exit a container, you lose every change to the container File System

The Dockerfile

ece # library/qacc - Docker Hu'

&« Cnhn Erhttps://hub.docker.com/_/gcc/

o225, > Q Search

OFFICIAL REPOSITORY

goe >x

Repo Info Tags

Short Description

Full Description

Supported tags and respectiv€ Dockerfile hnks

e 4.9.4, 4.9, 4 (4.9/Dockerfile)

e 5.4.0, 5.4, 5 (5/Dockerfile)

e 6.4.9, 6.4, 6 (6/Dockerfile)

e 7.2.0, 7.2, 7, latest (7/Dockerfile)

The GNU Compiler Collection is a compiling system that supports several languages.

m |

Explore Help Sign up Sign in

Docker Pull Command | &)

docker pull gcc

The Dockerfile

- The Dockerfile is what defines a Docker Container. Think about it as its
source code.

- When you build it, it generates a Docker Image. When you run a Docker
Image, this “becomes” a Docker Container, as mentioned before.

FROM <base image>
RUN <a setup command>
COPY <source file/folder on your 0S> <dest file/folder in the container>

RUN <another setup command>

What is the Gcece (5.4) container built from?

There is NO black magic in Docker.

Now that we know that its source code is in the Dockerfile, we can see on
what the Gce (5.4) image is built from.

What is the Gcece (5.4) container built from?

<> Code Issues 5 Pull requests 2 Projects 0 Insights ~

Tree: 3b33871fe9 v gcc / 5 / Dockerfile

[‘] tianon Add more (future) helpful bits, TODO/comments, and exclude i386 for now

1 contributor

125 lines (118 sloc) 4.59 KB Raw Blame

FROM buildpack-deps:jessie

RUN set -ex; \
if | command -v gpg > /dev/null; then \
apt-get update; \
apt-get install -y --no-install-recommends \
gnupg2 \
dirmngr \
HIA
rm -rf /var/lib/apt/lists/*; \
fi

https://gcc.gnu.org/mirrors.html

ENV GPG_KEYS \

1024D/745C015A 1999-11-09 Gerald Pfeifer <gerald@pfeifer.com>
B215C1633BCAB477615F1B35A583A004745C015A \

1024D/B75C61B8 2083-04-10 Mark Mitchell <mark@codesourcery.com>
B3C42148A44E6983B3E4CCO793FASB1AB75C6188 \

Find file Copy path

3b33871 on Jun 16

History [Z]

What is the Gcece (5.4) container built from?

<> Code Issues 6 Pull requests 1 Projects 0 Insights ~
Tree: 5d86449454 v buildpack-deps / jessie / Dockerfile Find file ~ Copy path
[‘ tianon Add "dpkg-dev" to the full variants 5d86449 27 days ago

7 contributors [‘] G m. ﬂ ‘

55 lines (53 sloc) 1.12 KB Raw Blame History o

1 FROM buildpack-deps:jessie-scm

RUN set -ex; \

apt-get update; \

apt-get install -y --no-install-recommends \
autoconf \
automake \
bzip2 \
dpkg-dev \
file \
g++ \
gee \
imagemagick \
libbz2-dev \
libc6-dev \
libcurl4-openssl-dev \
1libdb-dev \

libevent-dev \

What is the Gcece (5.4) container built from?

<> Code Issues 6 Pull requests 1 Projects 0 Insights ~
Tree: 1845b3f918 v buildpack-deps / jessie / scm / Dockerfile Find file Copy path
['] tianon Update generated Dockerfiles 1845b3f on Nov 24, 2015

1 contributor

13 lines (11 sloc) 287 Bytes Raw Blame History [

FROM buildpack-deps:jessie-curl

procps is very common in build systems, and is a reasonably small package
RUN apt-get update && apt-get install -y --no-install-recommends \
bzr \
git \
mercurial \
openssh-client \
subversion \
\
procps \
&& rm -rf /var/lib/apt/lists/*

What is the Gcece (5.4) container built from?

<> Code Issues 6 Pull requests 1 Projects 0 Insights ~
Tree: 9f60e19008 v buildpack-deps / jessie / curl / Dockerfile Find file Copy path
@ yosifkit Ensure gpg exists in curl variant 9f60e19 on Jul 6

2 contributors e [‘]

18 lines (15 sloc) 349 Bytes Raw Blame History

FROM debian:jessie

RUN apt-get update && apt-get install -y --no-install-recommends \
ca-certificates \
curl \
wget \
&& rm -rf /var/lib/apt/lists/*

RUN set -ex; \
if ! command -v gpg > /dev/null; then \
apt-get update; \
apt-get install -y --no-install-recommends \
gnupg2 \
dirmngr \
HIAY
rm -rf /var/lib/apt/lists/*; \
fi

What is the Gcece (5.4) container built from?

<> Code Issues 3 Pull requests 0 Projects 0 Insights ~

Tree: 97dc072ael v = docker-debian-artifacts / jessie / Dockerfile Find file Copy path

& docker-library-bot Update to 20170723 for amd64 (debuerreotype 0.2) 42bec5b on Jul 23

1 contributor

4 lines (3 sloc) 46 Bytes Raw Blame History

FROM scratch
ADD rootfs.tar.xz /
CMD [“bash")

Your first Docker container

We will now include and compile your test code directly from a Dockerfile

FROM gcc:5.4

Add the test code
COPY test.c /opt

Compile the test code
RUN gcc -v -0 /opt/test.bin /opt/test.c

Your first Docker container

Let’'s now build it with“test.c” and the Dockerfile files in a folder named “Test”:

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4
---> b87db7824271

Step 2/3 : COPY test.c /opt
---> t547817830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c
---> Running in c839379f1fbe

Using built-in specs.

COLLECT_GCC=gcc

[...]

Removing intermediate container c¢839379f1fbe
---> 2f0c6f89fdco

Successfully built 2f@c6f89fdce

Successfully tagged testcontainer:latest

Your first Docker container
..and we can run it;

$ docker run testcontainer /opt/test.bin
I just ran a very complex simulation and the result is 42

Your first Docker container

..and share it (old school):

$ docker save testcontainer > testcontainer.tar

$ docker load < testcontainer.tar

Your first Docker container

..and share it (Docker Hub):

$ docker tag testcontainer sarusso/testcontainer

$ docker push sarusso/testcontainer

The push refers to repository [docker.io/sarusso/testcontainer]
4e139ce93449: Pushed

8e5d12c6ccle: Pushed

531d@aa62df3: Mounted from library/gcc

2ac9aba62fcl: Mounted from library/gcc

4e778218c153: Mounted from library/gcc

8f816dba9ff6: Mounted from library/gcc

7381522c¢58b0: Mounted from library/gcc

ecd70829ec3d: Mounted from library/gcc

d70ce8b0dad6: Mounted from library/gcc

18f9b4e2elbc: Mounted from library/gcc

latest: digest: sha256:21563d1b6645af4cf73f01cc471b5f1a8bb902f7f1903bac4b9b878433eect5e size: 2421

Versioning: hashes, tags, etc.

If we rebuild the testcontainer, the caching jumps in. It takes few seconds.

$ docker build Test -t testcontainer
Sending build context to Docker daemon 10.24kB
Step 1/3 : FROM gcc:5.4
---> b87db7824271
Step 2/3 : COPY test.c /opt
--->|Using cache|
---> f5478f7830ee
Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c
--->|Using cache]
---> 2f0c6f89fdco
Successfully built 2f@c6f89fdce
Successfully tagged testcontainer:latest

..this is possible thanks to version hashes

Versioning: hashes, tags, etc.

An hash is the result of applying an hash function

An hash function takes some input and generates a fixed-size output, like:

47e0b9046c241cc4653b876c2a8ab01341c00754

- A good hash function allows to virtually never have the same hash from
different inputs.

- In both Git and Docker the input is your code, and and hash represents a
unique (saved) state. Or, a particular point in your codebase “history”.

- Then, it happens that hashes can be linked together, forming hierarchies.

- Atag is a friendly name for an hash.

Versioning: hashes, tags, etc.

Let’s have a look at the hashes for the first and second build

$ docker build Test -t testcontainer $ docker build Test -t testcontainer
Sending build context to Docker daemon 10.24kB Sending build context to Docker daemon 10.24kB
Step 1/3 : FROM gcc:5.4 Step 1/3 : FROM gcc:5.4
--->|b87db7824271 | --->|b87db7824271 |
Step 2/3 : COPY test.c /opt Step 2/3 : COPY test.c /opt
--->| £5478f7830¢ee --->|Using cache]
Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c --->|1547817830ee
---> Running in c839379f1fbe Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c
Using built-in specs. --->|Using cache|
COLLECT_GCC=gcc --->|2f0c6f89fdco |
[...] Successfully built|[2f0c6f89fdco|
Removing intermediate container c¢839379f1fbe Successfully tagged testcontainer:latest

--->|210c61+89tdco
Successfully built|2f0c6+89fdco |
Successfully tagged testcontainer:latest

Versioning: hashes, tags, etc.

- Both Git and Docker implement versioning with hashes, which are fully
deterministic, unlike version (incremental) numbers.

In the Docker ecosystem everything is versioned

- For practical use, also the short hashes are allowed (and commonly used),
which are the first 7 characters for Git (i.e. “47eeb9e”) and the first 12 for Docker.

- If by chance two hashes in the system starts with the same short hash, you will
be required to enter one more character or the full hash.

$ docker build Test -t testcontainer

Sepdi-ae f e o Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

---> b87db7824271

Step 2/3 : COPY test.c /opt
---> f5478f7830ee

One step back

©® © ® @ iibrary/ace - Docker H Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c
&« C f O https://hub.docker.com/_/gcc/ ---> Running in c839379flfbe
% Q Search Explore Help [IiSign Using built-in specs.
COLLECT_GCC=gcc
[...]
OFFICIAL REPOSITORY Removing intermediate container c839379f1fbe

---> 2f0c6f89fdco
Successfully built 2f@c6f89fdceo
Successfully tagged testcontainer:latest

gcc

Repo Info Tags
Short Description Docker Pull Command | &) pS the tag 54 for the gCC
Docker container is actually
The GNU Compiler Collection is a compiling system that supports several languages. docker pull gce

saying that the tag is “gcc:54”.
Sorry for this! :(

Full Description

e.@ - i1e i The hash for the tag “gcc:5.4”
Supporte(ahd respective Dockerfile links
. 4.9.4, 4.9, 4 (4.9/Dockerfile) tag is “b87db7824271"

. s.4.e (5/Dockerfile)
. 6.4.9, 6.4, 6 (6/Dockerfile)

s G200 12, /Dockerfile)

Where do you save your code and Dockerfile?

Where do you save your code and Dockerfiles?

..0N a versioning system.

Where do you save your code and Dockerfiles?

..0Nn a versioning system.

There is no other alternative.
Do not work without versioning.
Seriously, don't.

— Use Dropbox or Google Drive if you think that more
professional versioning tools, like Git, are an overkill.

The importance of versioning with Docker

Docker allows to have everything up and running, including dependencies etc.
with a single command.

This command trigger a build with a given set of dependencies (the ones you
wrote to install in the Dockerfile)

Over time, you will probably make changes in your Dockerfiles and in your code.

If you use a versioning system, you can jump back in time to a particular
version/hash, build it, and it will run exactly as it was running at that time

For managing multiple container versions simultaneously you can use tags

The importance of versioning with Docker

Docker allows to have everything up and running, including dependencies etc.
with a single command.

This command trigger a build with a given set of dependencies (the ones you
wrote to install in the Dockerfile)

Over time, you will probably make changes in your Dockerfiles and in your code.

If you use a versioning system, you can jump back in time to a particular

o uild it, and it will run exactly as it was running at that time

For managing multiple container versions simultaneously you can us

Recap on Docker

1) With Docker,your code will build and run in the exact same way, on every
operating system, virtually forever.

2) If you want to give the code that generates the magic “42” answer to someone,
they will just need two commands* to have everything up and running:

docker build or pull
docker run

*plus some arguments

Personal take

A versioning systems protects you first of all from yourself

Using Docker with a versioning system allows to reach full reproducibility,
starting from a repository name and a short hash for a point in time/version.

Using them even for small personal/research projects helps a lot

If someone gives you a code without version control or that requires
dependencies:

- First, put it under version control;

- Second, create a Dockerfile with all the commands and dependencies you will need to set it up
(which you will need anyway, by the way).

..and no, tomorrow you will not remember how you did. No one does. :)

How about GUI programs?

Running a GUI program inside a container requires either a X11 server outside the
container and forwarding the X11 socket, or other resorts like using VNC.

- Having a X11 server running outside a container and forward the X11 socket
inside the container: ok on Linux, tricky on Mac, hard on Windows

- Better: embed a VNC server in the container and require just a VNC client

- Best: embed a WebVNC server in the container and require just a browser.

README.md

Practical example: Astrocook

A thousand ways to cook a spectrum

Getting Started

To get a copy of Astrocook on your local machine:

IJ DAS-OATs / astrocook ©wWarch~ 4 Kkunstar 3 YFork 0
git clone https://github.com/DAS-OATs/astrocook
<> Code Issues 2 Pull requests 0 Projects 1 Wiki Security 1 Insights
Prerequisites
No description, website, or topics provided. Astrocook requires the following packages to run:
D 225 commits ¥ 2 branches © 2 releases A2 3 contributors »./Astrapy, Incliding Specutils
* SciPy, and in particular NumPy and matplotlib
* LmFit
Branch: makeover ~ New pull request Create new file Upload files Find file | <’ 8 000 0 - StitsNicdals
This branch is 95 commits ahead of master. i') Pull request [5) Compare oiCyclen
Guido Cupani Removed cookie (UTF error) Latest commit £75c£47 4 days ago Running the tests
B QSO_constants Implemented possibility to delete lines from tables through the GUI 19 days ago The following tests are available:
B astrocook Removed cookie (UTF error) 4 days ago
- () s ag « line_test.py: create a list of absoprtion lines from a spectrum and fit them with Voigt profiles.
[E) .DS_Store Removed cookie (UTF error) 4 days ago « syst_test.py: create a list of CIV doublets from a spectrum and fit them with Voigt profiles.
£ .gitignore Fixed shell-freezing at shutdown 22 days ago To run the tests:
[E) Changelog.txt Fixed bugs. Now the addition of new lines to all systems and the re-f... 9 months ago
python <name-of-the-test>
E) README.md Update README.md last year
B ac_gui.py Improvements in fitting complex systems. Several bug fixes 4 months ago))
Contributing
[E) espr_spec_form.dat Adapted Cook > Full to handle different quasars 5 months ago
[frame_test.py Improvements to the GUI 8 months ago A CONTRIBUTING.md file will be soon uploaded to detail our code of conduct and the process for submitting pull
B : - requests to us.
2 full_test.py Session and GUI class implemented 8 months ago
E) gui_test.py Polished Model class. 8 months ago Authors
model_defaults.dat Adapted Cook > Full to handle different quasars 5 months ago
* Guido Cupani - INAF-OATs
[E spectrum_test.py Improvements to the GUI 8 months ago « Giorgio Calderone - INAF-OATS
B test.py Frame class implemented 8 months ago

See also the list of contributors who participated in this project.
[testCont.py Changed fit.py to voigt.py and added methods to fit groups of lines, ... 2 years ago

Practical example: Astrocook

A thousand ways to cook a spectrum
Typical Scientific Code that requires
non-trivial dependencies.

It has a GUI, meaning that it requires
even other “implicit” dependencies

Getting Started
To get a copy of Astrocook on your local machine:

https://github.com/DAS-0ATs/astrocook

Prerequisites
Astrocook requires the following packages to run:

* Astropy, including Specutils

« SciPy, and in particular NumPy and matplotlib
* LmFit

* StatsModels

o Cycler

Running the tests

The following tests are available:

 line_test.py: create a list of absoprtion lines from a spectrum and fit them with Voiat profiles.

Ok, let’s start to figure out how to install the dependencies.. on my 4 years old OS.

. Or ...

Practical example: Astrocook

$ docker pull sarusso/astrocook

$ docker run -v$PWD:/data -p8590:8590 sarusso/astrocook

..and then open a browser on localhost:8590

Practical example: Astrocook

Clone the Astrocook repo, then:

$ docker build -f containers/Docker/Dockerfile . -t astrocook

$ docker run -v$PWD:/data -p8590:8590 astrocook

..and then open a browser on localhost:8590

My
browser

Practical example: Astrocook

€ C RO :8590/vnc.h onnect=true&resize=remote *

Astrocook
GuUl!

Minimal
Desktop
(fluxbox)

essions

Practical example: Astrocook

< C (@ localhost:8590/vnc.html?autoconnect=true&resize=remote %) o | @ :

File Edit View Ingredients Recipes Cook

name object active range # rows # nodes # lines
. . he0515m4414 (0) he0515m4414 [3043.78, 10428.92] Angstr... 283993
SCIentIfIC he0515m4414 (1) he0515m4414 [3043.78, 10428.92] Angstr... 283993 244 2767
he0515m4414 (2) he0515m4414 [3100.01, 3399.99] Angstrom 21302 19 66 09 !
stuff e ool
. s
=
B 07t
2
<
= 06
c
£
9 05F
9
T
0.4} 1548
0.9
£
g
508
2
2
<
=07t
0.8 §
G o6f
£ 0]
S 1550
‘é 0.6 0.5
£ -100 75
§
g t
504t .
3 func series b
b
< None None z0 z dz logNn dlogN Kin
8 voigt CIV 114913 114907 0.00002 13.05108 0.02885 50.00
—— he0515m4414
o2l he0515m4414, continuum 9 voigt CIV 115079 115087 0.00001 12.68910 0.01434 26.77
—— he0515m4414, model 10 voigt CIV 116397 116399 0.00000 12.21572 0.52056 3.286
he0515m4414, systs components 11 voigt unknown 328.40393 328.40383 0.00057 13.70385 0.05374 29.58
ol % _he0515madldylines i : 12 voigt CIV 111415 111408 0.00004 10.75720 1.73742 1.883
3320.0 3322.5 3325.0 3327.5 3330.0 3332.5 13 voigt CIv 113165 113174 0.00081 12.41381 4.89803 15.62
Angstrom 14 voigt CIV 1.13165 1.13165 0.00014 12.30107 7.10497 10.34
3332.0428, 0.7725 15 voigt CIV 113165 113155 0.00036 11.87266 4.67485 8.876
A €> Q== 16 voigt CIV 114715 114717 0.00000 12.73129 0.02667 12.044
17 voigt unknown 332.62758 332.62748 0.01073 12.51818 0.11857 50.00
18 voigt unknown 333.28885 333.28875 0.00033 12.09315 0.02498 6.418
19 voigt CIV 1.14912 1.14912 0.00000 12.36822 0.07595 6.733

e Qacfef7231f0 | Sessi

System table System table

Hope it helps :)

Questions?

Stefano Alberto Russo

stefano.russo@inaf.it

Talk repository: https:/github.com/sarusso/ModernSoftwareDevelopment (b141773)

mailto:stefano.russo@inaf.it
https://github.com/sarusso/ModernSoftwareDevelopment

