pandora.vipgi

the LBT (and not only) spectroscopic data reduction Pipeline

Marco Fumana

LBT and the pipeline description

LBT spectroscopic reduction center

Future developments

LBT-ITALY Team

Adriano Fontana
Roberto Speziali
Felice Cusano
Roberta Carini
Andrea Rossi
Alessio Giunta
Marco Faccini
Marcella Di Criscienzo
Vincenzo Testa
Diego Paris
Stefano Gallozzi
Adriana Gargiulo
Bianca Garilli
Letizia Cassarà
Susanna Bisogni

Resp. of LBT-Italy Resp. Service Observing & Partner Coordinator

Observer (2012) Observer (2014-2019) Observer (2015) Observer (2018) Observer* Observer*

Resp. Scient. support & Img. data reduction Img. data reduction & LSC Archive LSC Archive

Resp. Spect. data reduction, Observer (2017) and USER committee member
Former Resp. Spect. data reduction
Spect. data reduction (2018)
Spect. data reduction & Observer (coming soon)
Cloud maintenance & spec. pipeline (2010-2014)

Former Observers

Konstantina Boutsia → Ir Eleonora Sani (2012-2015) Alida Marchetti - IASF MI

→ Instrumentation Scientist @ Magellan

OAR

OAR

OAS

OAR

OAS

ASI

OAR

OAR

OAR

OAR

OAR

IASF-MI IASF-MI IASF-MI IASF-MI IASF-MI

→ Support Astronomer @ ESO VLT

Credits: Roberto Speziali

- pandora.vipgi development and test: The Italian spectroscopic data reduction pipeline for LUCI and MODS
- LBT-Italy spectroscopic reduction center
- Observation support

Letizia Cassarà, Paolo Franzetti, Marco Fumana, Adriana Gargiulo, Bianca Garilli, Marco Scodeggio

LBT pipeline description

VIPGI (Scodeggio et al, 2005)

- VIMOS Interactive Pipeline and Graphical Interface (has been created with the VVDS survey)
- Mainly developed at IASF Milano
- Collection of C programs, glued together by Python2 classes
- Tcl/Tk interface and BLT extension
- Used to achieve data reduction of VVDS, zCosmos and VUDS surveys

VIPERS survey lead us to introduce automatization **Easylife** = VIPGI + automation + DB + WEB interface

Amount of spectra

- VVDS: ~35000 spectra (<u>Le Fevre et al. 2013</u>)
- <u>zCosmos</u>: ~30000 spectra (<u>Lilly et al. 2007</u>)
- VIPERS: ~90000 spectra (Scodegio et al. 2018)
- VUDS: ~10000 spectra (<u>Le Fevre et al. 2015</u>)
- VANDELS*: ~2500 spectra (Pentericci at al. 2018)

*Easylife had to reduce a large number of data also in this case, because the observing strategy of VANDELS consists in many repeated observations

The LBT pipeline development began between VIPERS and VANDELS

LBT pipelines

LBT pipelines development benefits from the expertise acquired with all these surveys. Main problems to achieve:

- for the first time VIPGI is facing on with no VIMOS data
- VIPGI must be able to handle
 not homogenous data
- Instruments less stable than VIMOS

The LBT telescope

- Binocular telescope
- 2 primary mirrors ~8.5m ø each
- 2 spectrographs on each arm:
 - LUCI
 - MODS

The new spectrographs

Grating	Band	Order	$egin{array}{l} \lambda_{ m cen} \ [\mu { m m}] \end{array}$	$\begin{array}{c} 50 \ \% \ {\rm Cut} \ {\rm on/off} \\ [\mu {\rm m}] \end{array}$	$\frac{\rm Resolution}{[\lambda_{\rm cen}/\delta\lambda]}$	Free Spectral Range $[\mu m]$
G210	Κ	2	2.20	2.02 - 3.18	5000	0.328
G210	Η	3	1.65	1.41 - 1.90	5900	0.202
G210	J	4	1.25	1.09 - 1.41	5800	0.150
G210	z	5	0.97	0.89 - 1.11	5400	0.124
G200	HK	1	1.93	1.32 - 2.40	1900/2600	0.880
G200	zJ	2	1.17	0.90 - 1.25	2100/2400	0.440
G150	\mathbf{Ks}	2	2.15	1.81 - 2.40	4150	0.533

Туре	ID^1	Lines mm ⁻¹	Blaze Angle	Order	Nominal Range (Å) ²	Linear Dispersion ³	Spectral Pixels
Grating	G670L	250	4.3°	1	5800-10000	0.8Å/pix	5700
	G400L	400	4.4°	1	3200-5800	0.5Å/pix	5200
Prism	P700L	n/a	n/a	n/a	5800-10000	5 Å/pix	650
	P450L	n/a	n/a	n/a	3200-5800	5 Å/pix	650

Main changes required

- more flexibility: MOS and LONGSLIT mode
- set of configuration files in order to handle lots of configurations allowed by LUCI
- Handle new issues (i.e. related with NIR data)
- New unpackers to properly categorize file
 types of different instruments: acquisition, spectra, flats, arcs, science, ...
- New organizer to gather data according with PI, proposal, mask, ...

pandora.vipgi schema

pandora.vipgi architecture

- Reduction recipes are still written in C, but a dynamic library is created (no more executables)
- SWIG is used to wrap C recipes as Python modules
 VIMOS
- FASE (<u>P. Grosbøl et al 2012</u>) is used for recipe management, execution and logging
- ESO CPL library has been introduced for file I/O
- Files organization is coupled with a sqlite db

Spectroscopic reduction center

Reduction center

- The Spectroscopic reduction center exists since 2010.
- It is located here at IASF Milano
- It is in charge to reduce all spectroscopic
 data acquired at LBT during the Italian nights.
- Products we release, in the most cases, are ready for science analysis
- We have interactions with the PIs, if some custom reduction is required

Data volume

- The reduction center activities started when only LUCII was mounted.
- 2011 MODS has been added (MODS has 2 channels which act like 2 separate instruments)
- 2015 LUCI2 becomes operative
- 2016 also MODS2 was available
- The open shutter time is increased
- statistically: LBT-Italy observes more short programs, than longer one

Present scenario

- The amount of spectra is becoming larger and larger
- The person who is in charge to reduce data, has no time for its science: it's a full time job, not properly rewarded by INAF
- The type of observation becomes very diversified, and a standard reduction can be no more satisfactory

pandora.vipgi distribution

- PI can tune the recipes parameters according with his needs
- PI can also skip some steps and use its own software to achieve special needs

Future developments

TODO list

- Python3 migration
- improve the instrument configuration management
- code pruning: removing useless part of code
- fix known bugs/issues/features
- write user documentation

Idea is to release the first public version of pandora.vipgi on **september 2020** (in time for the 2020/21 LBT season)

open help desk here in Milan

solve future bugs raised by users