Numerical simulation of particle acceleration in CME shocks
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MHD-PIC simulation of ICME shock: Shock formation using piston method
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Role of instabilities in shock upstream:

@ Streaming of high energy particles induces
instabilities - resonant and non-resonant
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® Density cavities(shown in fig 1.) are the
result of such instabilities as evidenced.

fima=400 G- @ Size of the cavities are determined by the
= HOCO gyro-radius of local particle distribution.
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Figure 1. Density evolution of the parallel shock 10 1?%c/ ) 1000
. . . W
(M, = 19), moving towards right. Only a fraction of the P
simulation domain 1is depicted here. Figure 2. Fluctuating mass density power spectrum during

the near-saturation phase of the simulation
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Transverse magnetic field evolution around

the shock. For every time snap, the shock location
1s re-centered at x = 0.

®¢ Resonant instability:
Alfven waves i1nitiated by the energetic particles
resonate with the particles’ gyro-radii.

®¢ Non-resonant (Bell) instability:
Current induced by the energetic particles
perturbs the initial magnetic field, back-reacts
on the fluid by inducing Lorentz force.

® Transverse magnetic power spectrum peaks at the
Bell mode -system 1s mainly current driven.
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Figure 4. Transverse magnetic energy power spectrum
calculated in a region just ahead of the shock.



Magnetic field enhancement in the shock downstream:

® Downstream magnetic field 1s not only more turbulent but also
amplified as compared to the upstream magnetic field.

® Certain locations 1in the downstream shows magnetic amplification
larger than one expects from shock compression of the
pre—amplified magnetic field in shock upstream by the Bell
instability.

@ This excess amplification is because of the small scale dynamo
acting in the downstream region induced by the Richtmyer—-Meshkov
Instability at the corrugated shock front.
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Particle energisation in parallel shock:
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Figure 7. Evolution of downstream
particle-energy spectra (EB/2 compensated) .

Flattening of the spectra ensures DSA 1s an
efficient mechanism in particle
acceleration.

Figure 8.2D energy spectrum, showing the
particle energy distribution as a function of
position x. High energy particles outrunning
the shock are evident from this 2D spectrum
confirming the commencement of particle
acceleration.

® Magnetic fluctuations act as scattering centres for the
escapling particles away from the shock,confining them
close to the shock front.

®@ Particles undergo repetitive reflections across the
shock gaining energy every time they cross the shock
front - Diffusive Shock Acceleration(DSA).

@ DSA dominates the particle acceleration mechanism in
parallel shock where the particle energy spectrum
follows a power law £(E) oc E3/2 45 evident from fig 7.
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Particle energisation in quasi-perpendicular shock:
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Figure 9. Injected and saturated particle
energy spectra for quasi-perpendicular

Particle energisation is less as compared to the parallel
shock of same Alfvenic mach.

Particles hardly escape the shock upstream- no evidence of
magnetic fluctuations required for DSA for particle
energisation.

Shock Drift Acceleration(SDA) plays a dominant role in
accelerating the particles 1in this case.

shock with MA=19.

I

® Anisotropy 1n particles velocity
distribution along with the orilentation
of magnetic field in the shock
downstream confirms the activation of
SDA 1n quasli-perpendicular shock.
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Observational aspects from simulation findings :

Parallel shocks

@ Diffusive Shock Acceleration plays a dominant role in parallel shock where particle energy spectrum

follows a power law: f (E) oc g 3/7

@ Streaming of high energy particles induce instabilities in the shock upstream.
®@ Bell instability dominates the upstream magnetic power spectrum.

@ Small scale dynamo plays 1mportant role in the amplification of downstream magnetic field.

Quasi-perpendicular shocks

@ Particles are less energised as compared to the parallel shocks.
® Shock Drift Acceleration 1in perpendicular shocks accelerates the particles.

® Anisotropy 1n particles’ velocity distributions along with the magnetic field orientation may confirm
the role of SDA 1n quasi-perpendicular shock.
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