A Theoretical Model of the Near-Surface Shear Layer of the Sun

Bibhuti Kumar Jha¹ & Arnab Rai Choudhuri² ¹ARIES, Nainital, India; ²IISc, Bangalore, India E-mail: <u>bibhuti@aries.res.in</u>

Solar Rotation profile as measured from helioseismology

$$\implies \frac{\partial S}{\partial \theta} = C_V \frac{1}{T} \frac{\partial}{\partial \theta} \Delta T$$

Methodology

 (r, θ) $r = R_{\odot}$

1. Solve for ΔT for given Ω in $r < r_c$

2. Solve for Ω for given $\Delta T(r_c, \theta)$ in

 $r > r_c$

Inputs

- Ω based on analytical expression which does not contain any signature of NSSL ((Schou et al. 1998; Charbonneau et al. 1999)
- Ω as observed in Helioseismology (Antia et al.;1998,2008)
- S-Model for temperature (Dalsgaard, 1996)

NSSL Based on Analytical Expression

Even though our input Ω does not contains any signature of **NSSL** our model successfully gives a feature like NSSL.

Distribution of $\Omega(r \ge r_c, \theta)$ based on our model and $\Omega(r > r_c, \theta)$ as per analytical expression.

NSSL Based on Helioseismology Data

Distribution of $\Delta T(r, \theta)$ based on the Helioseismology observation of $\Omega(r,\theta)$

For $r_c = 0.96 \text{ R}_{\odot}$ our model matches well with the observation.

Distribution of $\Omega(r \ge r_c, \theta)$ based on our model and $\Omega(r > r_c, \theta)$ as per Helioseismology observation.

Conclusion

• For $r_c = 0.96 \text{ R}_{\odot}$ our model was successfully able to produce the **NSSL** observed with RMS error 1.3 %

• For $r_c = 0.96$ the **PETD** also shows the agreement with the observation of Rast et al. (2008)

