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Quasi-periodic pulsations (QPPs)
X4.9 flare 25/02/2014
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Quasi-periodic pulsations (QPPs)

Several mechanisms modeled, maml rouped in
three families (Kupriyanova et al. 20 O%

1. Direct emission modulation by MHD
oscillations,

2. Periodic modulation, via MHD oscillations,
of the efficiency of energy release
processes,

3. Spontaneous quasi-periodic energy release.

Different observational signatures (see table 1 in
Zimovets et al. 2021):

wavelength affected, range of period, evolution of
the period, dampmg, etc.

BUT
Rarely possible to disentangle between them.

Different mechanisms could co-exist, even in a single flare.

Recent reviews: Mc Laughlin et al. 2018,
Kupriyanova et al. 2020, Zimovets et al. 2021
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X2.2 tflare on 15 February 2011
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e Observations in Lyman-a could offer
an interesting complement of
information to SXR and EUV for the
QPP analysis but datasets are still
scarce

* Biggest provider is GOES, but with a
time resolution limited to 10s (GOES

15) and even 30 s (L1b data from
GOES-R)

* Most QPPs have periods around 20-
30s
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Figure from Hayes et al. 2020



LYRA channel 2 and GOES irradiance
(erg s’ cm?)

High sampling Lyman-a observations from

PROBA2/LYRA (Dominique et al., 2018)
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Is the period increasing? (see also Li et al., in press)
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Normalized irradiance
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QPPs in the X8.2 flare on 10 September 2017
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High sampling Lyman-a observations MAVEN/EUVM.
Allows characterization of QPPs for a flare behind

the limb



Why analyzing QPPs in Lyman-a?

Up to 10% of the flare energy could be emitted in Lyman-«,
Emission tracks non-thermal emission,

More and more often available in full-Sun instruments,
Amplitude of QPPs more pronounced than in SXR or EUV.

BUT
* Not as easy to observe as SXR or EUV (instrumental problems),
* Important center-to-limb variation of the Lyman-a emission,

. Tflmce) main provider of flare observations in Lyman-a (GOES) has a sampling rate limited to
~10s.

No statistical analysis of QPPs in Lyman-a yet, but first results promising!



Coming soon...

* SOSPIM, a solar monitor on-board the JAXA mission Solar-C.

* Includes a Lyman-a channel, expected to acquire measurements at a
sub-second cadence.

* Launch currently planned in 2026.

$ measuring the sun

SEOsSpIMm



