CMEs, Flares, Prominences in Lyα: Science Preparations for ASO-S/LST

Li Feng, Hui Li, Ying, Li and LST team lfeng@pmo.ac.cn Purple Mountain Observatory, Chinese Academy of Sciences

ASO-S/LST

(launch time 2022)

Parameter	SCI_WL	SCI_UV	SDI	WST
Waveband	$700.0\pm40.0\mathrm{nm}$	$121.6\pm10.0\mathrm{nm}$	$121.6\pm7.5\mathrm{nm}$	$360.0\pm2.0\mathrm{nm}$
FOV	$1.1 - 2.5 R_{\odot}$		$0.0-1.2R_{\odot}$	$0.0 - 1.2 R_{\odot}$
Spatial resolution	$\sim 4.8''$		$\sim 1.2''$	$\sim 1.2''$
Image size	2048×2048		4608×4608	4608×4608

- Seamless observations in Ly α from solar disk (SDI) to 2.5 Rs (SCI);
- Simultaneous dual-waveband coronagraph observations in both $Ly\alpha$ and WL

CMEs, Flares, Prominences in $Ly\alpha$

Flares in Ly α – simulations via RADYN code

Flares in Ly α - observations

200

300

Statistical studies on $Ly\alpha$ flares:

- Time properties: duration, rising, decay times peak time with respect to SXR peak and SXR time-derivative peak
- Flux properties: contrast, fluence, etc.

Automatic detection of Ly α flares – a catalog of start, peak, and end times, flux etc

Flares in Ly α - observations

Case studies on QPPs (Quasi-Periodic Pulsations) in Lya

1-minute and 3-minute QPPs were detected in Lyα emission during the SOL2012-01-27 Flare (X1.7)

1-min QPP: precursor, impulsive, and decay phases; a self-oscillatory regime of the magnetic reconnection, such as magnetic dripping.

3-min QPP: only impulsive phase; the acoustic wave in the chromosphere.

QPPs of about 1 min and 2 mins in Ly α during solar flares were also detected in HXR and microwave, suggesting a non-thermal origin of the Ly α emission.

Table 2 Double periods observed in the Ly α , HXR, and microwave emissions during solar flares.

		P1 [minutes]	P2 [minutes]	Ratio (P2/P1)
SOL2011-02-15T01:44	GOES Ly a	1.09 ± 0.05	2.15 ± 0.15	1.97 ± 0.23
	RHESSI 25-50 keV	1.26 ± 0.19	2.13 ± 0.32	1.69 ± 0.52
	NoRP 35 GHz	1.37 ± 0.12	2.17 ± 0.36	1.58 ± 0.41
	NoRH 34 GHz	1.37 ± 0.19	2.13 ± 0.33	1.56 ± 0.47
SOL2011-09-25T04:31	GOES Ly α	1.33 ± 0.19	2.42 ± 0.24	1.82 ± 0.45
	RHESSI 25-50 keV	1.37 ± 0.16	2.24 ± 0.31	1.64 ± 0.43
	<i>Fermi</i> 27 – 50 keV	1.27 ± 0.12	2.46 ± 0.33	1.94 ± 0.45
	NoRP 35 GHz	1.12 ± 0.11	2.41 ± 0.29	2.15 ± 0.48
	NoRH 34 GHz	1.19 ± 0.10	2.39 ± 0.28	2.00 ± 0.41
SOL2012-05-17T01:25	GOES Ly α	1.12 ± 0.05	2.19 ± 0.16	1.96 ± 0.23
	NoRP 17 GH	1.12 ± 0.06	2.33 ± 0.35	2.08 ± 0.43
	NoRH 17 GH	1.25 ± 0.09	2.33 ± 0.36	1.86 ± 0.43

Lu+(2021)

Li+(2020)

CMEs in Ly α - simulations

Ying+,2021, in prep

Comparison of radiative component of $Ly\alpha$ intensity under different assumptions

	Irad1	Irad2	Irad3	Irad4	Irad5
nonuniform Lyα disk intensity	Y	uniform	Y	Y	uniform
detailed scattering geometry	Y	Y	Sun as a point- source	Y	Sun as a point- source
$T_p \neq T_e$	Y	Y	Y	$T = T_e$	$T = T_e$
Max uncertainty to Irad1	/	~15%	~10%	~25%	~30%
	1				1 11 14

CMEs in Ly α - observations

The observations by UVCS/SOHO show different CME structures in $Ly\alpha$ and white light (WL) and reveal different thermodynamic evolutions in its void and core.

7.0

6.0

5.5

5.0

Ī 6.5

Alog10(Temperature

Ying+(2020)

Prominences in $Ly\alpha$ - simulations

Synthetic Ly α and WL images: optically thin assumption

Yuhong Fan+ (2019) Yuhong Fan(2017)

Zhao, Zhang+,2021, in prep

Prominences in $Ly\alpha$ – optically thick regime

1D NLTE radiative transfer code - PRODOP

Zhao, Zhang+,2021, in prep

The Ly α line intensity and optical thickness are computed in the region with density larger than $1X10^9$ cm⁻³ and temperature less than 100 000K.

Prominences in Ly α –

comparing optically thin and thick results

Science preparations for ASO-S/LST

Synergy with SolO/Metis and EUI:

- Stereoscopic observations: LST and Metis-EUI have different perspectives and the same Lyα wavelength
- LST can provide synoptic Lyα disk intensity images for calculating the Lyα intensity in the corona.