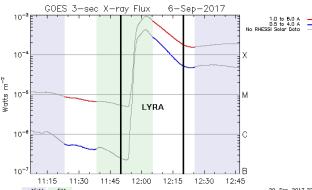
Study of White-light Emission During the X9.3 Flare on September 06, 2017

J. Kašparová¹, L. Mravcová^{1,2}, M. Švanda^{2,1}, J. Jurčák¹, P. Heinzel¹

¹Astronomical Institute of the CAS, Ondřejov, Czech Republic

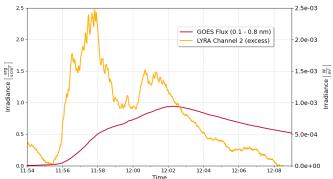
²Astronomical Institute of Charles University, Prague, Czech Republic



ESPM-16, virtual, Sep 6-10, 2021

September 6, 2017 X9.3 flare

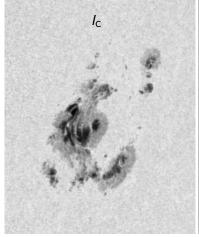
- the largest flare of 24th solar cycle
- ullet start at $\sim 11:53~\mathrm{UT}$
- detected by several instruments, e.g.:
 - RHESSI, Fermi: gradual phase only
 - Hinode: SOT/SP
 - SDO/HMI: white-light pseudo-continuum
 - LYRA: solar irradiance in UV range

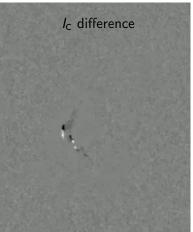


Proba 2/LYRA Channel 2 data

- Large Yield RAdiometer (LYRA) on board Proba 2 (Hochedez et al., 2006)
 - solar irradiance at 4 channels
 - Channel 2: Herzberg channel, 1990 2200 Å, temporal cadence 20 Hz

Sep 6, 2017 flare - Dominique et al. (2018)

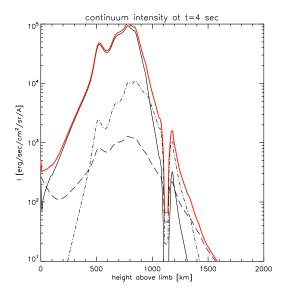

- the first flare detected in Channel 2
- emission consistent with hydrogen Balmer continuum



HMI pseudo-continuum I_C

- HMI data product from Fe I 617.3 nm scans
- 45 s time cadence, 0.5" spatial sampling

Assumptions


- optically thin emission from a layer of thickness L
- intensity of recombination continua (Heinzel et al. 2017; Dominique et al., 2018)

$$i$$
=2,3,4.. Balmer, Paschen, Brackett,..
$$I_{\nu}=n_{\rm e}^2F_i(\nu,T)L$$
 $F_i(\nu,T)\sim B_{\nu}(T)T^{-3/2}{
m e}^{h\nu_i/kT}(1-{
m e}^{h\nu/kT})/(i\nu)^3$

continuum heads:
$$\lambda_2=364.6\,\mathrm{nm}$$
 $\lambda_3=820.4\,\mathrm{nm}$ $\lambda_4=1458\,\mathrm{nm}$ emission data: $\lambda_{\mathrm{LYRA}}=200\,\mathrm{nm}$ $\lambda_{\mathrm{HMI}}=617.3\,\mathrm{nm}$

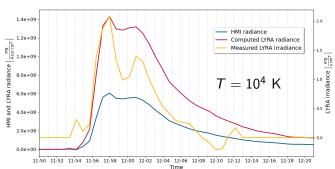
Hydrogen continuum emission

- total emission at λ_{HMI}
- Paschen continuum
- -.-. hydrogen f-f emission- Thomson scattering

 non-LTE RHD model of a height-dependent continuum shows that f-f emission is a minor contributor to continuum emission at λ_{HMI} (Heinzel et al. 2017)

(Hemzer et al. 2017)

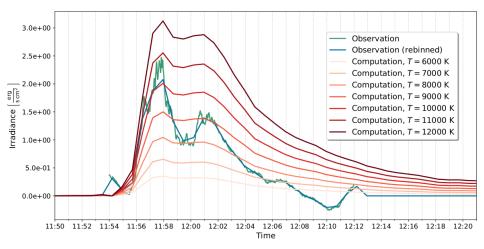
titude Carech Academy Predicted LYRA emission from HMI data


• for a given T, HMI gives emission measure $[n_e^2 L](t)$

$$[n_{
m e}^2 L](t) = \sum_{
m flare\ pixels} I_{
m HMI}(t)/[F_3(
u_{
m HMI},\,T) + F_4(
u_{
m HMI},\,T]$$

$$I_{\text{LYRA}}(t) = [n_{\text{e}}^2 L](t) [F_2(\nu_{\text{LYRA}}, T) + F_3(\nu_{\text{LYRA}}, T) + F_4(\nu_{\text{LYRA}}, T)]$$

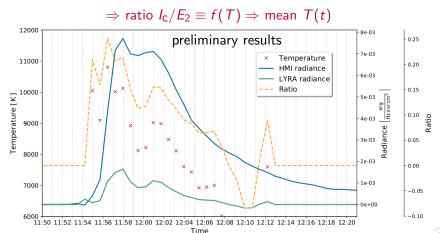
• predicted LYRA irradiance $E_2(t)$ using Dominique et al. (2018)


$$E_2(t) \sim \int_{\lambda} S_2(\lambda) I_{\mathsf{LYRA}}(t) \, \mathsf{d}\lambda \qquad S_2(\lambda) \, ... \; \mathsf{eff.} \; \mathsf{area}$$

Predicted LYRA emission for several T

• predicted LYRA irradiance $E_2(t)$ for a set of T

• $E_2(t)$ sensitive to T

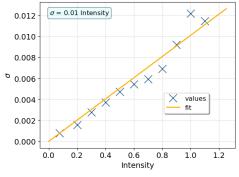


Temperature evolution

Assumptions

- I_C and E₂ given by hydrogen recombination continua
- continua formed within the same optically thin layer

Conclusions


- HMI and LYRA data were used to study flare continuum emission
- assuming the emission is due to hydrogen recombination, mean temperature in the flaring area can be determined
- preliminary results show $T(t) \sim 7\,000-11\,000$ K during the impulsive phase of an X9.3 flare

HMI flare emission

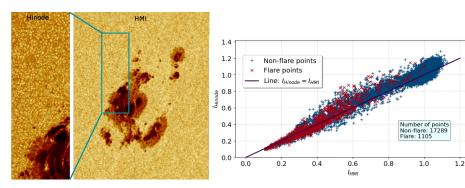
- space-temporal analysis
- based on I_C difference above a threshold

$$I_{\rm C}^{\rm diff}(x,y) > 5 \ k \ I_{\rm C}^{\rm PF}(x,y) \,,$$

 $k = 0.01,$
 $I_{\rm C}^{\rm PF} = \overline{I_{\rm C}(11:30-11:40)}$

- a flare pixel must
 - have at least 2 neighbours at start
 - occur on 3 subsequent frames at least
- end of a flare pixel light curve defined as time when $\overline{I_c}(x, y)$ reached $I_c^{PF}(x, y)$ within 5%
 - a box car over 5 frames

$$I_{\rm C}$$
 at 10:00 and 11:30 UT $\sigma(I_{\rm C})=kI_{\rm C}$


⇒ Flare pixel light curves

HMI versus Hinode data check

• Švanda et al. (2018) showed HMI product $I_{\rm C}$ can be off from continuum intensity close to Fe I 630 nm lines observed by Hinode

- no systematic offset of I_C
- no correction applied