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(Aschwanden, Benz,1997)

Sub-THz emission vs hard X-ray emission in solar flares

(Shibata, 1999; 
Carmichael 1964; 
Sturrock 1966; 
Hirayama 1974; 
Kopp & Pneuman
1976)

6 December, 2006 (Kaufmann et al., 2009)

Large fluxes at sub-THz frequencies 
& a correlation with HXRs 

In many cases emission is associated 
with accelerated non-thermal 

electrons

(Krucker et al., 2008)
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Flare observations with sub-THz emission

OVSA

Normal extension of microwave spectrum

SST

OVSA

22-Mar-2000 flare  (Trottet et al. 2002)

• Thermal component from hot coronal 
plasma gives rather small fluxes (e.g. 
Trottet et al. 2002; Tsap et al., 2016,  2018)
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• Most events have a negative spectral 
slope between frequencies of 200 and 
400 GHz (Kaufmann et al., 2004; Silva et al., 
2007; Kaufmann et al., 2009)

• Flare emission is mostly gyro-synchrotron 
from power-law electrons (e.g. Dulk et al. 

1979; Trottet et al 2002) with a source size 
of ~10” (typical size for millimeter sources, 
e.g. Raulin et al. 1999)



Flare observations with sub-THz emission

140 GHz

93 GHz
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RT-7.5

• “W-shaped” spectrum suggests existence  of 
another emission mechanism at sub-THz 
frequency range

(Kaufmann et al., 2009; adapted from Castelli, 1972)

• But in some cases there is a positive spectral 
slope between frequencies of 200 and 400 GHz  
(Trottet et al., 2002; Raulin et al., 2004; Lüthi et al., 
2004; Gimenez de Castro et al., 2009)

4-Jul-2012 flare (Tsap et al.,2016)



Proposed sub-THz emission mechanisms

140 GHz

93 GHz
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RT-7.5

• Optically thick thermal free-free emission (Silva et al. 2007; 

Fleishman & Kontar, 2010)

• Gyro-synchrotron emission: 
• from a compact source with a large magnetic field B > 

2000 G (Kaufmann and Raulin 2006; Fleishman & Kontar, 2010)

• due to absorption in an optically thick thermal plasma
(Morgachev et al., 2017)

• Razin effect in a dense plasma (Melnikov et al. 2012)

• Plasma mechanism (Zaitsev et al., 2013)

• Cherenkov radiation from chromospheric layers (Fleishman 

and Kontar, 2010) 

• Synchrotron mechanism of emission from positrons (Trottet

et al., 2004) 

• Inverse Compton effect (Kaufmann et al., 1986)

• Emission from short-wavelength Langmuir turbulence 
(Fleishman & Kontar, 2010)

4-Jul-2012 flare (Tsap et al.,2016)



• Optically thick thermal free-free emission (Silva et al. 2007; 

Fleishman & Kontar, 2010)

• Gyro-synchrotron emission: 
• from a compact source with a large magnetic field B > 

2000 G (Kaufmann and Raulin 2006; Fleishman & Kontar, 2010)

• due to absorption in an optically thick thermal plasma
(Morgachev et al., 2017)

• Razin effect in a dense plasma (Melnikov et al. 2012)

• Plasma mechanism (Zaitsev et al., 2013)

• Cherenkov radiation from chromospheric layers (Fleishman 

and Kontar, 2010) 

• Synchrotron mechanism of emission from positrons (Trottet

et al., 2004) 

• Inverse Compton effect (Kaufmann et al., 1986)

• Emission from short-wavelength Langmuir turbulence 
(Fleishman & Kontar, 2010)

140 GHz

93 GHz

RT-7.5

Proposed sub-THz emission mechanisms

• The proposed models have several assumed 
conditions and suffer from a lack of 
observational support, thus they cannot be 
verified observationally
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4-Jul-2012 flare (Tsap et al.,2016)



UV flare ribbon areas vs the sub-THz radio flux (Kontar et al., 2018)
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• Large sub-THz fluxes correspond to large UV areas 
• Spectral index between 200 and 400 GHz δ <2 
• All radio fluxes at 200-400 GHz frequency range can be explained by the radiation of an optically thick 

source with a plasma temperature between 2×104 K and 2×106 K, which characterizes the chromosphere 
and transition region

• Numerical simulation is needed

(Kontar et al., 2018)



Numerical codes: FLARIX и RADYN (Kašparova et al., 2009; 2019)

•

FLARIX (Varady et al. 2010) и RADYN (Carlsson &
Stein, 1997)
• RHD codes which couple the hydrodynamic equations 

to the non-LTE 1D radiative transfer and time-
dependent non-equilibriumatomic level population 
equations, for elements important for chromospheric
energy balance

• Describe the response of an unperturbed solar 
atmosphere VAL-C to a beam of non-thermal electrons

• There are differences in approaches (Fokker-Planck VS 
test particles); different initial flare atmosphere; 
radiation losses; RADYN considers H, He & Ca, with Mg 
also sometimes included, whereas FLARIX considers H, 
Ca, and Mg; etc... 

(Kerr & Polito, ISSI proposal, 2019)
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Modeling: FLARIX и RADYN

• Initial atmosphere VAL-C (Vernazza, Avrett, and Loeser, 1981)
• Nonthermal electron flux in the form of a triangular pulse 
• Parameters of the electron beam: 

o spectral index δ=3; 
o cutoff energy Ec=20 keV; 
o total energy of electrons Fe=1011 erg×s-1×cm-2

Initial parameters:

*Model №37 based on RADYN is taken from F-CHROMA solar flare model database (https://www.fchroma.org)
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• Each model contains distributions of plasma parameters (temperature T, electron density ne, degree 
of ionization, etc.) with height over a time interval of 50 sec. with a time step of 0.1 sec

• Using the model height dependences of the temperature and electron number density at each time, 
we can calculate the intensity of its thermal bremsstrahlung at height H at frequencies ν equal to 
100 and 400 GHz 



Results Comparison
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• Nonthermal electron flux in the 
form of a triangular pulse with 
duration of 20 sec

o spectral index δ=3 
o cutoff energy Ec=20 keV
o total energy of electrons

Fe=1011 erg×s-1×cm-2

• Contribution Function 

• The total radiation flux
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1) The time evolution of thermal bremsstrahlung in the sub-terahertz range 
was calculated for the RADYN & FLARIX models.

2) The maxima of the pulse and millimeter emission coincide. The 
characteristic heights of the formation of sub-THz emission vary over a 
wide range. The main contribution to the sub-THz emission is made by 
plasma with a temperature of 0.01 - 0.1 MK. 

3) The regions of formation of sub-THz emission in the RADYN & FLARIX 
models differ by less than 100 km. The difference in the radiation flux 
does not exceed 15%.  

4) The information about formation of sub-THz emission along with new 
ALMA observations will help us to understand the origin of sub-THz 
emission in solar flares.

Conclusions
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