

Simulation of thermal sub-THz emission from solar flares

Galina Motorina, Yuriy Tsap, Jana Kašparová, Alexander Morgachev, Victoria Smirnova

Astronomical Institute ASCR, Ondřejov, Czech Republic Pulkovo Observatory, St. Petersburg, Russia Crimean Astrophysical Observatory, Crimea

ID #531: Session 4 - From Radio to Gamma Rays: Near-Sun Manifestations and Triggering of Solar Flares and CMEs **16th European Solar Physics Meeting (online, 6-10 September 2021)**

m_²]

Flare observations with sub-THz emission

Normal extension of microwave spectrum

- Most events have a negative spectral slope between frequencies of 200 and 400 GHz (Kaufmann et al., 2004; Silva et al., 2007; Kaufmann et al., 2009)
- Flare emission is mostly gyro-synchrotron from power-law electrons (e.g. Dulk et al. 1979; Trottet et al 2002) with a source size of ~10" (typical size for millimeter sources, e.g. Raulin et al. 1999)

• Thermal component from hot coronal plasma gives rather small fluxes (e.g. Trottet et al. 2002; Tsap et al., 2016, 2018)

2

Flare observations with sub-THz emission

 But in some cases there is a positive spectral slope between frequencies of 200 and 400 GHz (Trottet et al., 2002; Raulin et al., 2004; Lüthi et al., 2004; Gimenez de Castro et al., 2009)

(Kaufmann et al., 2009; adapted from Castelli, 1972)

 "W-shaped" spectrum suggests existence of another emission mechanism at sub-THz frequency range

Proposed sub-THz emission mechanisms

Microwave Spectrum+ Sub-THZ- December 06, 2006 – 18:30UT (Adapted from Kaufmann etal, 2009 – *S.Phys. 255, 131)*.

- Optically thick thermal free-free emission (Silva et al. 2007; Fleishman & Kontar, 2010)
- Gyro-synchrotron emission:
 - from a compact source with a large magnetic field B > 2000 G (Kaufmann and Raulin 2006; Fleishman & Kontar, 2010)
 - due to absorption in an optically thick thermal plasma (Morgachev et al., 2017)
 - Razin effect in a dense plasma (Melnikov et al. 2012)
- Plasma mechanism (Zaitsev et al., 2013)
- Cherenkov radiation from chromospheric layers (Fleishman and Kontar, 2010)
- Synchrotron mechanism of emission from positrons (Trottet et al., 2004)
- Inverse Compton effect (Kaufmann et al., 1986)
- Emission from short-wavelength Langmuir turbulence (Fleishman & Kontar, 2010)

Proposed sub-THz emission mechanisms

2006 – 18:30UT (Adapted from Kaufmann etal, 2009 – *S.Phys. 255, 131*).

- Optically thick thermal free-free emission (Silva et al. 2007; Fleishman & Kontar, 2010)
- Gyro-synchrotron emission:
 - from a compact source with a large magnetic field *B* >
 - The proposed models have several assumed conditions and suffer from a lack of observational support, thus they cannot be verified observationally
 r, 2010)
 plasma
- Cherenkov radiation from chromospheric layers (Fleishman and Kontar, 2010)
- Synchrotron mechanism of emission from positrons (Trottet et al., 2004)
- Inverse Compton effect (Kaufmann et al., 1986)
- Emission from short-wavelength Langmuir turbulence (Fleishman & Kontar, 2010)

UV flare ribbon areas vs the sub-THz radio flux (Kontar et al., 2018)

- Large sub-THz fluxes correspond to large UV areas
- Spectral index between 200 and 400 GHz δ <2
- All radio fluxes at 200-400 GHz frequency range can be explained by the radiation of an optically thick source with a plasma temperature between 2×10⁴ K and 2×10⁶ K, which characterizes the chromosphere and transition region
- Numerical simulation is needed

Numerical codes: FLARIX и RADYN (Kašparova et al., 2009; 2019)

FLARIX (Varady et al. 2010) и RADYN (Carlsson & Stein, 1997)

- RHD codes which couple the hydrodynamic equations to the non-LTE 1D radiative transfer and time-dependent non-equilibriumatomic level population equations, for elements important for chromospheric energy balance
- Describe the response of an unperturbed solar atmosphere VAL-C to a beam of non-thermal electrons
- There are differences in approaches (Fokker-Planck VS test particles); different initial flare atmosphere; radiation losses; RADYN considers H, He & Ca, with Mg also sometimes included, whereas FLARIX considers H, Ca, and Mg; etc...

Modeling: FLARIX и RADYN

Initial parameters:

- Initial atmosphere VAL-C (Vernazza, Avrett, and Loeser, 1981)
- Nonthermal electron flux in the form of a triangular pulse
- Parameters of the electron beam:
 - \circ spectral index δ =3;
 - \circ cutoff energy E_c=20 keV;
 - \circ total energy of electrons F_e=10¹¹ erg×s⁻¹×cm⁻²

- Each model contains distributions of plasma parameters (temperature T, electron density n_e, degree of ionization, etc.) with height over a time interval of 50 sec. with a time step of 0.1 sec
- Using the model height dependences of the temperature and electron number density at each time, we can calculate the intensity of its thermal bremsstrahlung at height H at frequencies v equal to 100 and 400 GHz

*Model Nº37 based on RADYN is taken from F-CHROMA solar flare model database (https://www.fchroma.org)

Results Comparison

- Nonthermal electron flux in the form of a triangular pulse with duration of 20 sec
 - o spectral index $\delta=3$
 - \circ cutoff energy E_c=20 keV
 - total energy of electrons $F_e = 10^{11} \text{ erg} \times \text{s}^{-1} \times \text{cm}^{-2}$
- Contribution Function

$$CF(h) = \eta_{v}(h) \exp\left(-\int_{h}^{H} k_{v} dh\right)$$

• The total radiation flux

$$F_{\nu}(h) = \frac{S}{R^2} \int_0^h CF(h') dh'.$$

Conclusions

- 1) The time evolution of thermal bremsstrahlung in the sub-terahertz range was calculated for the RADYN & FLARIX models.
- 2) The maxima of the pulse and millimeter emission coincide. The characteristic heights of the formation of sub-THz emission vary over a wide range. The main contribution to the sub-THz emission is made by plasma with a temperature of 0.01 0.1 MK.
- 3) The regions of formation of sub-THz emission in the RADYN & FLARIX models differ by less than 100 km. The difference in the radiation flux does not exceed 15%.
- 4) The information about formation of sub-THz emission along with new ALMA observations will help us to understand the origin of sub-THz emission in solar flares.