

Project SolMAG

D. J. Price, J. Pomoell, E. K. J. Kilpua

Department of Physics, University of Helsinki, email: daniel.price@helsinki.fi

Flux Rope Twist

- Flux rope commonly defined as having a coherent bundle of field lines that completes one full turn about its axis – a winding number of 1.
- Difficult to compute unless cylindrical symmetry is assumed.
- In practice, approximated by geometry-independent Tw (Berger & Prior, 2006):

$$T_{w} = \int_{L} \frac{\mu_{0} J_{\parallel}}{4\pi B} dl = \int_{L} \frac{\nabla \times \boldsymbol{B} \cdot \boldsymbol{B}}{4\pi B^{2}} dl$$

- This measures how two infinitesimally close field lines wind about each other.
- Able to be computed quickly and easily.

Flux Rope Twist

However, if the axis is known the winding number can be computed (Berger & Prior, 2006; Liu et al., 2016)

Single Field Line Testing

- Defined an axis with length $s = [0, \pi]$.
- Axis coordinates taken as: $(0, \cos(s), \sin(s))$.
- 'Field line' described by helical equation: $\cos(2Ns) + \sin(2Ns)$.
- Where N is the winding number.

Single Field Line Testing

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI N = 5

Tg = 5.01

Idealised Flux Rope Testing

• Approximately uniformly twisted flux rope from Vandas and Romashets (2017).

Dependency on Axis Location

Max(Tg) = 1.54

Max(Tg) = 1.64

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Axis set 10 Mm above the true axis

True axis

Axis set 10 Mm below the true axis

Distribution Investigation

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Geometric Effects

Normal vector length proportional to contribution to Tg

Geometrical effects visually evident

Core Tw = 1.57Red line Tg = 1.50Blue line Tg = 1.63

Summary and Future Work

- Implemented a method for computing the winding number of a flux rope.
- Tested against a single 'field line' and an idealised flux rope.
- Showed the importance of selecting the correct axis location.
- Future work
 - Test against more idealised and real data-driven flux ropes.
 - Further examine the effects of non-cylindrical symmetry as in Liu et al. (2016).

References

- Berger, M. A., Prior, C.: 2006, The writhe of open and closed curves, *Journal of Physics A:* Mathematical and General, **39**, 8321. <u>https://doi.org/10.1088/0305-4470/39/26/005</u>
- Liu, R., Kliem, B., Titov, V. S., Chen, J., Wang, Y., Wang, H., Liu, C., Xu, Y., Wiegelmann, T.: 2016, Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist, *The Astrophysical Journal*, 818, 148. <u>https://doi.org/10.3847/0004-637X/818/2/148</u>
- Vandas, M., Romashets, E.: 2017, Magnetic cloud fit by uniform-twist toroidal flux ropes, Astronomy & Astrophysics, 608, A118. <u>https://doi.org/10.1051/0004-6361/201731412</u>