Reference quiet-Sun Lyman-a and Mg II h&Kk line profiles as a boundary condition for radiative transfer modelling of the solar atmosphere
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Using the best sets of Lyman-a and Mg II h&k solar-disk observations currently available, we derived
reference quiet-Sun profiles of Lyman-a and Mg II h&k lines representing solar radiation during a
minimum of solar activity. These profiles can serve as an incident radiation boundary condition for
the radiative transfer modelling of chromospheric and coronal structures for which the illumination
in Lyman-a and Mg II h&k lines plays a significant role. The solar radiation in these strong lines is
important also for the investigation of the heliosphere, Earths ionosphere, and the atmospheres of
planets, moons, and comets.

To derive the Lyman-«a reference profile (Fig. 3), we used eight SOHO/SUMER raster scans (Fig. 1)
obtained without the use of the attenuator. These observations were performed in various quiet-Sun
regions on three consecutive days during a period of minimum solar activity. A detailed analysis of all

eight SOHO/SUMER rasters does not show any clear evidence of a centre-to-limb variation in the
Lyman-« integrated intensities (Fig. 2). That is in agreement with the findings of Curdt et al. (2008).

Solar radiation in Lyman lines is not constant over time but varies significantly with the solar cycle. To
take these changes into account, we developed a method that uses the LISIRD composite Lyman-«
index (Machol et al. 2019) to adapt the intensities of Lyman-« and higher Lyman lines to a specific
date. As is clear from Fig. 4, differences between the total Lyman-« irradiance during maxima and
minima of the solar cycle can reach up to 100%. These differences remain high (up to 50%) even
after applying a 400-days running average to the index.

To estimate the influence of the change in the incident radiation in the Lyman lines on the results of

Fig. 1. We use eight SOHO/SUMER Lyman-a raster scans obtained on Jun 24, Jun 25, and Jun 26, 2008. Rasters have dimensions of 120” x 120" and consist of 80 slit positions.
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Fig. 2. Centre-to-limb variation: Averaging the Lyman-a integrated intensities from all rasters over

radiative transfer models, we used the 2D prominence fine structure model of Heinzel & Anzer (2001).
The analysis of the influence of the change in the incident radiation shows that the synthetic spectra
are strongly affected by modification of the incident radiation boundary condition (see Table 1). The
most pronounced impact is on the central and integrated intensities of the Lyman lines. There, the
change in the synthetic spectra can often have the same amplitude as the change in the incident
radiation itself. The impact on the specific intensities in the peaks of reversed Lyman-line profiles is
smaller but still significant. The hydrogen Ha line can also be considerably affected, even though the
Ha radiation from the solar disk does not vary with the solar cycle.

More details can be found in Gunar et al. (2020), together with datasets describing the reference
Lyman-a profile and the variation of the Lyman lines with the solar cycle throughout the lifetime of
SOHO. The LISIRD composite Lyman-« index is accessible at:

lasp.colorado.edu/lisird/data/composite lyman alpha.

Fig. 4. The variation of the total Lyman-a irradiance based on the LISIRD composite Lyman-a.

concentric arcs with a width of 1” (each arc is represented by a circle) does not show any clear trend. index (grey line) smoothed by the running average over 400 days (red line).
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To derived high-precision reference profiles of the Mg II h&Kk lines (Fig. 6) representing the quiet Sun
during a minimum of the solar activity, we used the broad catalogue of IRIS full-Sun mosaics. To
minimize the influence of the local variations due to the on-disk solar features and to achieve low levels
of uncertainties, we used 12 IRIS full-Sun mosaics without sunspots or other significant signs of solar
activity.

The limb darkening — a progressive decrease of intensity with the shortening distance from the solar
limb — is clearly visible in the Mg II h&Kk lines. To properly characterize this variation, we divided IRIS
full-Sun mosaics into 10 zones (a - j) consisting of concentric rings with an equal area (Fig. 5). When
plotted side-by-side, Mg II k line profiles from individual zones clearly show the gradual decrease of
the intensities going from the disk-centre zone a to the near-limb zone j. In Figure 8, we show the
integrated intensities of the Mg II h and MQIl K lines as a function of distance from the disk centre.
In the case of 3.5 A wide range, the intensities in the near-limb zone j are lower by about 35% than
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Solar radiation in Mg II h&Kk lines also changes over time. The extent of its variation can be seen in
the observations by SORCE/SOLSTICE shown in Fig. 9, where we display changes in the irradiance
of the Mg II k line integrated over £1.0 A range. These can reach up to 30%. Even after applying the
400-days running average, differences between minima and maxima of solar activity are about 18%.

Using the 2D prominence model, we analyzed the influence of the change in the incident radiation on
the synthetic spectra (see Table 2). The most pronounced impact is on the central and integrated
intensities, where the change in the synthetic spectra is often as large as the change in the incident
radiation.

More details on the reference Mg II h&k spectra can be found in Gunar et al. (2021a). For details of
the variation of the Mg II h&k profiles with the solar cycle see Koza et al. (2021) and poster #150.
Our analysis of the impact of the Mg II h&Kk incident radiation change on the results of the models of

Tab. 2. Relative differences between central, integrated and peak intensities, and the line widths of the synthetic spectra
obtained with the Mg II incident radiation increased by 18% and the reference incident radiation data.

Mg h&k incident Mg h intensity Mg h Mg K intensity Mg 11 K
radiation change centre integral peak width centre integral peak width
17 % 17% 15% 0% 17 % 17% 15% 0% max
18 % 16 % 16% 14% 0% 16% 16% 12% 0% median
15% 13% 13% 0% 15% 12% 11 % 0% min

Fig. 8. Center-to-limb variation of the integrated intensities of the reference Mg II h and Mg II k profiles from individual
zones (a- j). The upper pair of the step functions corresponds to integration over the wavelength range of 3.5 A while
the lower pair corresponds to the integration over 1.0 A.
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