Roger Dufresne

Modelling Low Charge Ions in the Solar Atmosphere

Roger Dufresne and Giulio Del Zanna

(DAMTP, University of Cambridge)

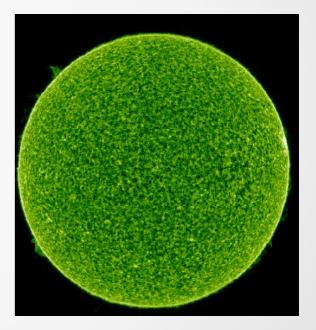
Nigel Badnell

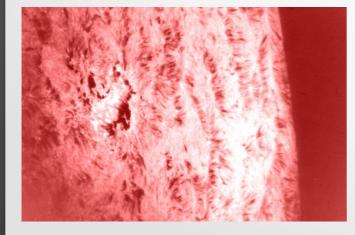
(Department of Physics, University of Strathclyde)

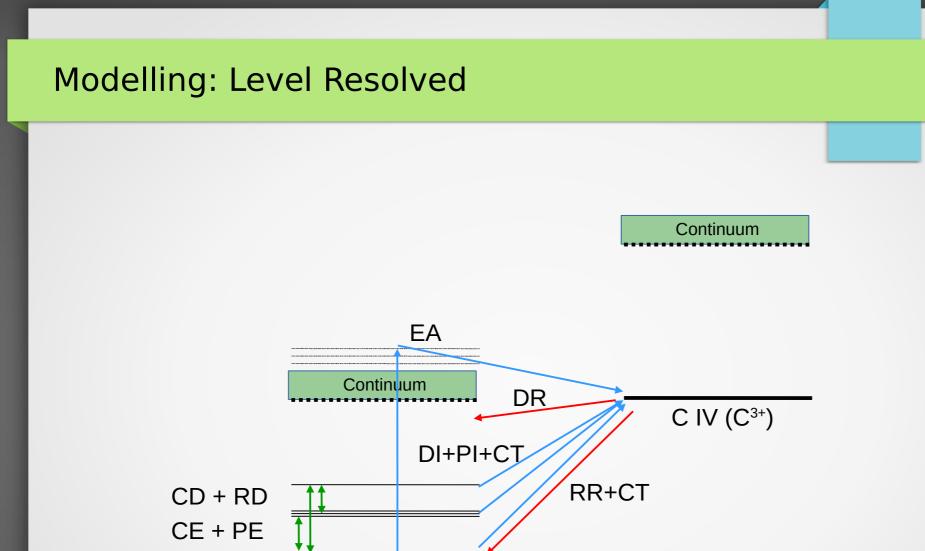
Pete Storey

(University College London)

MNRAS 2020, 497, 1443; MNRAS 2021a, 503, 1976; MNRAS 2021b, 505, 3968


Science and Technology Facilities Council


Background


<u>Corona</u> $(6x10^{5}-3x10^{6} \text{ K})$ – steady state equilibrium, independent atom models, ground level ionisation and recombination

<u>Transition region</u> (25000-6x10⁵K) -

<u>Chromosphere</u> (6000-25000K)– Time-dependent ionisation, radiation hydrodynamics, photo-induced processes, charge transfer, inelastic collisions with hydrogen.

C III (C²⁺)

DI – Direct IonisationPI – Photo-ionisationEA – Excitation-AutoionisationRR/RD – Radiative Recombination/DecayDR – Dielectronic RecombinationCT – Charge TransferCE/CD – Collisional Excitation/De-excitationPE – Photo-excitation

Methods: Modelling new atomic processes

Density effects

Ionisation and recombination from metastable levels:

New ionisation rate calculations for carbon and oxygen, using Flexible Atomic Code (Gu, 2008, Can. J. Phys.,86, 675) and Autostructure (Badnell 2011, CPC, 182, 1528)
Recombination data from APAP Network (Badnell 2006, ApJS, 167, 334, Badnell et al, 2003, A&A, 406, 1151)

Suppression of dielectronic recombination:

Estimated from data of Summers, 1974, MNRAS, 169, 663.

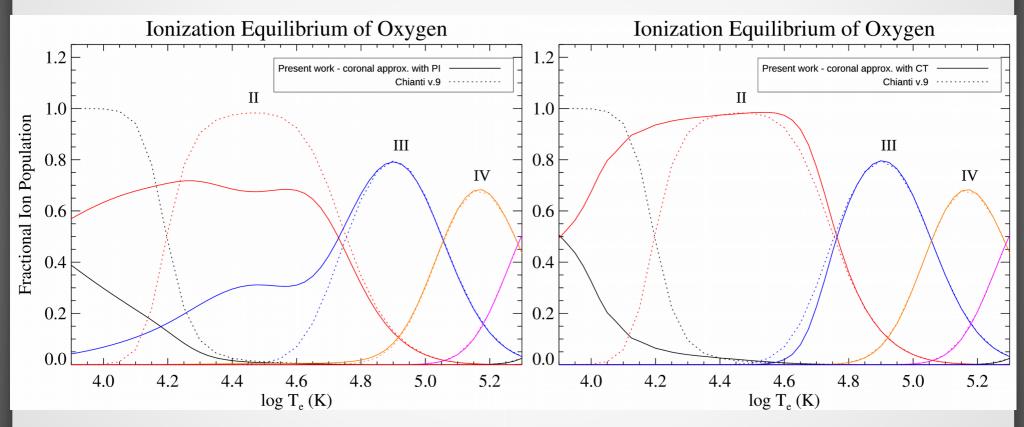
Photo-ionisation

$$\alpha_{ij}^{PI} = 4\pi \int_{\nu_0}^{\infty} \frac{\sigma_{ij}(\nu)}{h\nu} J_{\nu} \,\mathrm{d}\nu$$

Cross sections from Badnell N. R., 2006, ApJS, 167, 334.

Radiances from Woods T. N., et al., 2009, Geophys. Res. Lett., 36, L01101.

Charge transfer

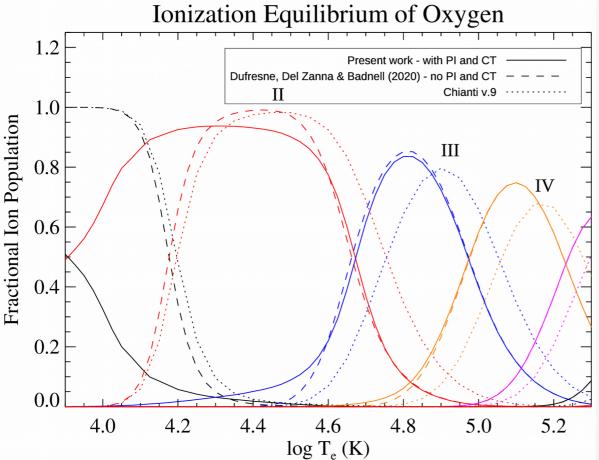

Reactions of type: $A^{+z} + H \leftrightarrow A^{+(z-1)} + H^+$

$$R_{\rm CT}(T_{\rm e}) = \frac{N_{\rm H\,I}}{N_{\rm H}} \frac{N_{\rm H}}{N_{\rm e}} N_{\rm e} \alpha_{\rm CT}(T_{\rm e})$$

Hydrogen fractional populations taken from Avrett E. H., Loeser R., 2008, ApJS, 175, 229

With photo-ionisation only

With charge transfer only



- O I depleted by both processes
- O II enhanced at low temperature
- Charge transfer opposes photo-ionisation of O II at higher temperature

Charge transfer data:

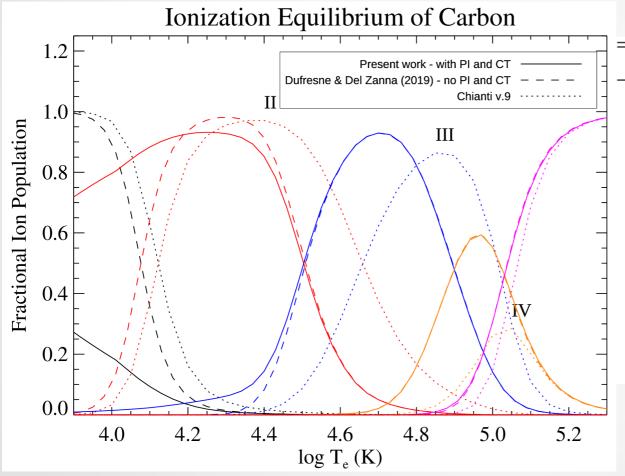
Stancil P. C., et al. 1999A, J. Phys. B, 32, 1523 Barragán P., et al. 2006, ApJ, 636, 544 Wang J. G., et al. 2003, Phys. Rev. A, 67, 012710 Wu Y., et al. 2009, Phys. Rev. A, 79, 062711

With all atomic processes combined

Comparison with observations

_

Ion	$\lambda_{ m obs}$	$I_{\rm obs}$	$R_{\rm c}$	$R_{\rm e}$	$R_{\rm f}$
Оп	832.75	11.2^{a}	3.02	2.66	2.20
Оп	834.45	35.5^{a}	2.85	2.51	2.08
Оп	833.32	24.5^{a}	2.75	2.42	2.01
Оп	718.49	15^a	2.10	1.39	1.22
Оп	796.66	2.84^{d}	1.71	1.32	1.21
OIII	1660.80	19.3^{b}	0.44	0.61	0.79
OIII	832.92	13.7^{c}	1.21	1.32	1.37
OIII	833.74	47.3^{c}	1.06	1.14	1.19
OIII	835.10	12.9^{c}	0.98	1.06	1.10
OIII	835.26	63.8^{c}	1.09	1.19	1.23
OIII	702.89	27.5^{a}	1.16	1.15	1.17

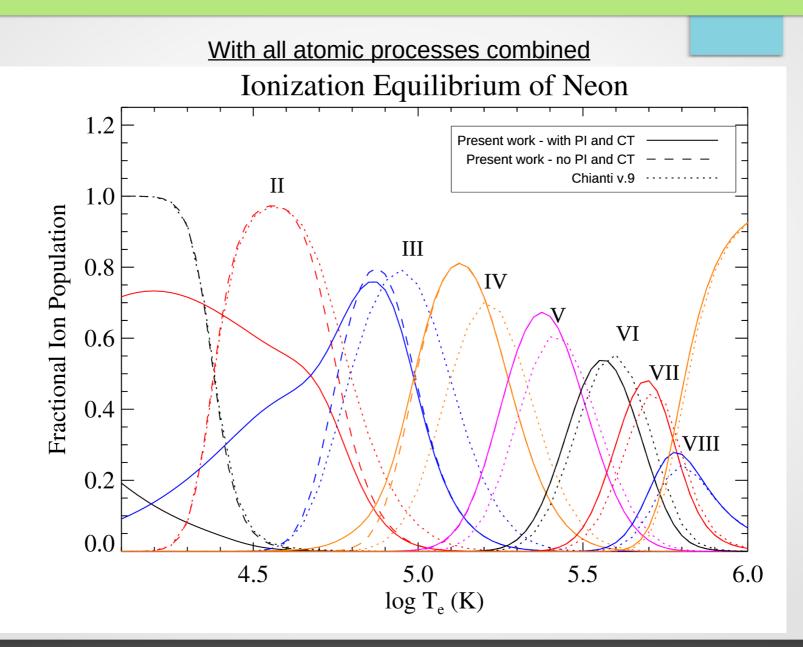

Theoretical to observed intensities

- R_{c} coronal approximation
- R_{e} density effects added

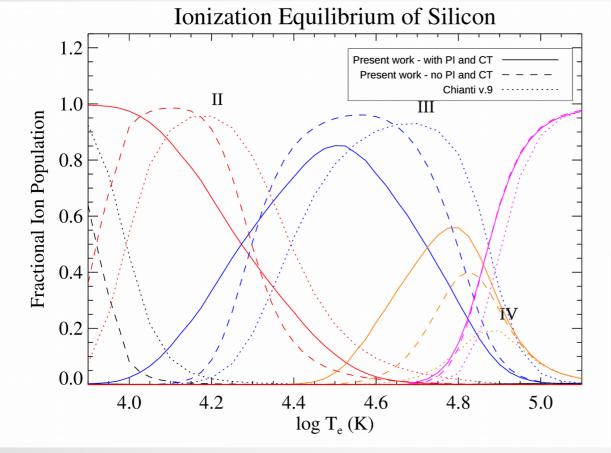
 R_{f} – charge transfer and photoionisation added

 Higher temperature O II lines and O III lines now agree with observations

With all atomic processes combined


All predicted intensities in better agreement with observations

Comparison with observations


Ion	$\lambda_{\rm obs}$	$I_{\rm obs}$	$R_{\rm c}$	$R_{\rm e}$	$R_{\rm f}$
CII	1334.53	937^{a}	0.56	0.66	0.94
$C \Pi$	1335.71	1350^{a}	0.75	0.90	1.29
$C \Pi$	1036.34	57.9^{a}	0.92	0.81	0.69
$C \Pi$	1037.00	70.1^{a}	1.50	1.31	1.12
$C \Pi$	903.99	9.98^{a}	2.22	1.68	1.29
$C \Pi$	904.46	6.29^{a}	1.78	1.34	1.03
$C \Pi$	903.59	9.19^{a}	1.62	1.21	0.94
$C \Pi$	904.14	23.1^{a}	3.21	2.41	1.87
$C \Pi$	1323.91	1.72^{b}	2.47	1.30	0.98
C III	977.04	702^{c}	0.65	0.86	0.87
C III	1174.88	37.4^{c}	0.65	0.83	0.83
C III	1175.74	104^{c}	0.71	0.89	0.89
C III	1176.37	36.2^{c}	0.67	0.85	0.85
CIV	1548.24	212^{b}	0.43	1.28	1.26
$\mathrm{C}\mathrm{iv}$	1550.82	134^{b}	0.34	1.02	1.00

Theoretical to observed intensities

- R_c coronal approximation
- R_{e} density effects added
- R_{f} charge transfer and photoionisation added

With all atomic processes combined

Comparison with observations

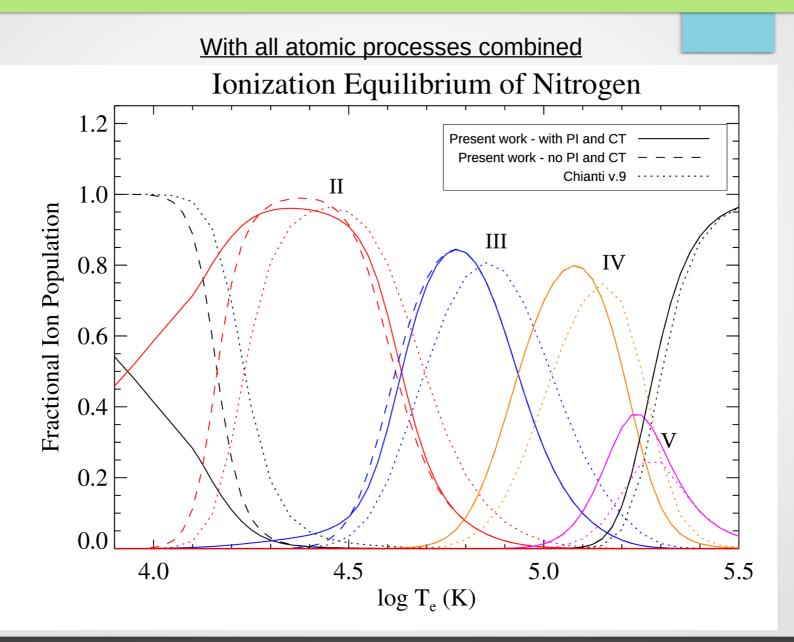
Ion	$\lambda_{\rm obs}$	$I_{\rm obs}$	$R_{\rm c}$	$R_{\rm e}$	$R_{\rm f}$
SiIII	1892.03	832^h	0.47	0.85	1.08
Si III	1206.51	630^{e}	0.69	0.87	0.69
Sim	1294.54	4.9^{e}	0.84	0.84	0.60
Sim	1298.89	16.9^{e}	0.83	0.83	0.59
Sim	1296.73	3.8^{e}	0.83	0.84	0.60
Sim	1108.37	4.3^{e}	0.61	0.57	0.40
Sim	1109.97	6.5^{e}	1.00	0.92	0.66
Sim	1113.23	15.5^e	1.07	0.97	0.70
Siıv	1393.78	280^{a}	0.06	0.16	0.33
Siıv	1402.77	127^{a}	0.07	0.18	0.37

Theoretical to observed intensities

- R_{c} coronal approximation
- R_ density effects added
- R_{f} charge transfer and photoionisation added

• Predicted intensities of Si IV resonance lines increase by more than a factor of 5

<u>CT data</u>: Kimura M., et al. 1996, ApJ, 473, 1114 Clarke N., et al. 1999 J.Phys., 31, 533 Wang J. G., et al. 2006, Phys. Rev. A, 74, 052709 Stancil P. C., et al. 1999, J. Phys. B, 32, 1523


Modelling Ion Populations

Summary

- 1) Calculated level-resolved direct and indirect ionization rates
- 2) Metastable levels included in modelling
- 3) Simulated dielectronic recombination suppression in modelling
- 4) Added photo-induced and charge transfer processes
- 5) Improved predicted line intensities compared to observations

Future work

- 1) Find changes in diagnostics from new modelling
- 2) Add simplified optical depth effects for low temperature lines
- 3) Non-Maxwellian electrons
- 4) Time dependent ionisation

