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Types of harmonic linear modes:

- Propagating waves: ~ sin (wt —kx)

- Standing waves:~cos(wt)sin(kx)

- Evanescent waves:~ cos(wt)exp (-kx)

- Intermediate modes ~exp(-iwt) f(x), where f(x) is the
oscillating complex function

- How to describe the intermediate modes on the basis
of analytical methods?
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A method to determine cutoff
frequencies for linear acoustic waves
propagating in non-isothermal media is
introduced. The developed method is
based on wave variable transformations
that lead to Klein-Gordon equations, and
the oscillation theorem is applied to
obtain the turning point frequencies.
Physical arguments are used to justify the
choice of the largest turning point

frequency as the cutoff frequency.
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Fig.1 (online colour at: www.an-journal.org) Cutoff frequency
Q2. of torsional waves along a thin magnetic flux tube in a VAL-
C atmosphere. The shaded region indicates frequencies that have
been observed as waves or as life times of vortex motions around
downdrafts.
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3. Kneser’s (necessary and sufficient) oscillation theorem: Con-
sider the equation v + f(x)y = 0. Then, if 0 < f(z) <
1/(42%) for 0 < a < x < oo, the solution y(x) is nonoscil-
latory. If f(x) > (1 + €)/(42?) with € > 0, then the solution
y(x) 1s oscillatory.

These theorems show that the critical quantities are the func-
tions (0;(z) and Q; (7 ), but not the frequencies w;(z) and w; (7).
So the frequencies wi and wo alone cannot indicate the character
of the solution. However, the frequencies ws and w4 determine
the functions ()3 and (4 directly. The above theorems do not
give information on the ratio and the behavior of the amplitudes,
the reflection, and the transmission. The theorems are presented
in many text-books of differential equations (e.g. Kamke 1983,
Stepanow 1963, and also in the work of Gradshteyn & Rhyzik
(1980).



Characteristics of the Energy Transfer by Alfven Waves
in the Solar Atmosphere
Tsap et al. (2020), G&A, 60, 446.

The so-called turning points cannot adequately characterize the energy flux of
Alfven waves. This conclusion indicates that results based on the analysis of
oscillation theorems must be revised.
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Initial equations
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In our case, solar atmosphere is VAL-C, the magnetic field B=const.

We used the MHD numerical code FLASH 4.5, using Adaptive Mesh
Refinement (Fryxell et al., 2000) to provide the simulation. The size of the
simulation region is (5 x 5) Mm, the total number of grids is 3749, which
gives the maximum resolution 0.00976 Mm. Initial perturbation of the
system is:
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where A, is the amplitude of the initial pulse, and A = 200 km is its width.
This pulse preferentially triggers Alfvén waves (Jelinek et al. 2015). The
perturbation point, L, is located at a distance of 500 km from the
photosphere. B,=10 G.

DB: arcade_hdfb

plt_cnt_0000

Cycle: 1 Time|0

Pseuclocclor

ar: dens
2444405
1.833e+05

4.0
1.222e+05

—6.109e+04

—1.434
Max: 2.4448+05
Min: 1.434
3.0+
Contour
Var. vecz

All

Y-Axis

Pseudocalor
Var velz
002140 2.0

—0.01070
—0.000
0.01070

1.0

0.02140
Max: 0.02140
Min: -0.02140

Max: 2,231
Min: -2.231

Figure 1. Initial state of the system in time = O s.
Colors represent the mass density distribution
(logarithmic scale). Black solid lines — the

magnetic field lines.

Blue and red circles

represent the location of the initial velocity pulse.
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Movie 1. Mass density evolution (units in

kg/m-3). Axis in Mm.

Simulation results
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Movie 2. Time evolution of the velocity. Axis in Mm.
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Simulation results
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Figure 3. Time series of the velocity variations in a reference
pointy = 1.8 Mm (a). Wavelet power spectrum (b). P = 50 s.

Figure 2. Velocity profile in time = 75 s, after the wave is reached the
transition region. It is seen that the amplitude of the wave
decreased. Distance in Mm.
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Movie 4. Evolution of the Alfvén energy flux magnitude. Axis in Mm.

The energy flux could be estimated as:
S = —1/u,[B*V — (BV)B] (W/m2).
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Figure 4. Profile of the Alfvén energy flux magnitude in
times = 75, 77, 82 and 85 s, after the wave is reached the
transition region. It is seen that the wave amplitude is not
sufficiently changed. Distance in Mm. Flux: W/m? x10°.



Conclusions

We produced numerical simulation of propagation of
Alfvén perturbations in stratified solar atmosphere.

The results of simulations clearly show the Alfvén waves
with a period of 50 s.

The energy flux of Alfvén waves does not feel the turning
points in the lower solar atmosphere.



