In-flight radiometric calibration of Metis using stars

Y. De Leo, L. Teriaca, V. Andretta, M. Romoli, D. Spadaro and the Metis Core Team
What is Metis?

Metis is an imaging externally occulted coronagraph that provides full Imaging of the extended corona in UV, and visible light in pB and tB, with different spatial resolution and detector exposure time (Antonucci et al. 2019).

Visible light channel vignetting function as measured on ground
Radiometric calibration with stars

Tracks of the analysed stars in the field of view of the Metis VL channel (2048 pxl x 2048 pxl).

The stellar target opportunity is very rich for the VL channel

It is important to consider that the available targets for the UV channel are relevantly less
Starting from the star signal $N_*(\text{counts per second})$, it is necessary to invert the data in order to find the channel efficiency ε_{ch}:

$$N_*(\text{FoV}) = \bar{f}_* \cdot \varepsilon_{ch} \cdot A_{pup} \cdot VF(\text{FoV})$$

$$\varepsilon_{ch} = \frac{N_*(\text{FoV})}{\bar{f}_* \cdot A_{pup} \cdot VF(\text{FoV})}$$

Metis VL bandpass (580-640 nm)
The Metis VL channel peculiar photometric system

The VL channel is comparable to a non-standard red filter so it is necessary to adapt the calibration of a non-standard photometric system to a standard one.

\[
R = \frac{\bar{f}_{\text{Metis}}}{\bar{f}_R} = \frac{\int F_{\lambda} T_{\text{Metis}} d\lambda}{\int T_{\text{Metis}} d\lambda}
\]

and

\[
\bar{f}_R = \frac{\int F_{\lambda} T_R d\lambda}{\int T_R d\lambda}
\]

and from the magnitude relation

\[
m_R - m_{R0} = -2.5 \log \frac{\bar{f}_R}{\bar{f}_R_0}
\]

\[
f_{R0} = 2190 \cdot 10^{-12} \text{ erg/cm}^2/\text{s}/\text{Å} \quad \text{zero point flux}
\]

\[
m_{R0} = 0.07
\]

\[
\bar{f}_{\text{Metis}} = R \cdot \bar{f}_R = R \cdot f_{R0} \cdot 10^{-\frac{m_R - m_{R0}}{2.5}}
\]
In this plot the first results of the data inversion.

The values are consistent between the several stars.

This analysis provides the radiometric coefficient to pass from L0 data (in digital units) to L2 data (in physical units).
Comparison between the star signal and the VF trend along the field of view of the UV channel

In this case the two trends present an evident discrepancy on the west side of FoV
Working hypothesis: Assuming that at each point of the door the reflectance ratio for the 2 channels is the same, we can try to use UV2VL ratio to correct the data.

Using the UV2VL ratio maps was helpful to reduce the discrepancy.
Conclusions

• The study of the stars transits, since the beginning of the *commissioning phase*, has proven to be very useful in order to optimize the radiometric calibration of the two channels of the instrument.

• This preliminary analysis already shows that the VL channel response is substantially as expected.

• For the UV channel we noticed a discrepancy between star data and the VF measured on ground, and this requires more work in order to fix the response of this channel.

References

Contact: Yara De Leo deleo@mps.mpg.de
Thanks for your kind attention!
Back-up slides
Field of view: annular, 1.5° - 2.9°
- 1.6 R_{\odot} to 3.0 R_{\odot} @ 0.28 UA
- 2.4 R_{\odot} to 4.4 R_{\odot} @ 0.40 UA

Metis is an imaging externally occulted coronagraph that provides full imaging of the extended corona in UV, and visible light in pB and tB, with different spatial resolution and detector exposure time.

Antonucci et al. 2019
Coronagraph peculiarities: the Vignetting Function
Beta01 Scorpii

RC activity: STP-139/140/141

(DN/S) and VF vs FoV (y = 1365, 15-Mar-2021)

(DN/S) and VF vs FoV (y = 707, 15-Mar-2021)
Delta Scorpii

RC activity: STP-139/140/141
Theta Ophiuchi

RC activity: STP-139/140/141

(DN/S) and VF vs FoV (y= 1017, 25-Mar-2021)

(DN/S) and VF vs FoV (y= 535, 25-Mar-2021)
3 central stars comparison

- **Alpha Leonis**
 \(y = 538 \)

- **Theta Ophiuchi**
 \(y = 535 \)

- **Omega Scorpii**
 \(y = 579 \)
29 Piscium
Delta Scorpii

29 Piscium: $y = 181$
Delta Scorpii: $y = 171$
UV frame from STP-139:
On board average of 8 frames exposed 16 s

UV frame from STP-140:
On board average of 8 frames exposed 16 s

RC activity: STP-139/140
UV frame from STP-130:
On board average of 15 frames exposed 60 s

VL pB frame from STP-130:
On board average of 15 frames exposed 30 s

Activity: STP-130
Activity: STP-130