

Inferring impulsive heating of quiet solar corona using machine learning Vishal Upendran¹, Durgesh Tripathi¹

¹ Inter-University Center for Astronomy and Astrophysics, Pune.

Problem: Estimate the viability of impulsive events in maintaining the quiescent solar corona (QS) at a million degree.

Idea: Use impulsive models incorporating statistical QS properties

- Statistical properties of QS:
 - Intensity distribution: Lognormal spatially and temporally (Pauluhn and Solanki 2001).
 - Markovian process in play (Gorobets+ 2016).
- Multitude of impulsive events give rise to QS intensities.
- Don't care about exact intensity locations, but only frequency of occurrence.

Forward model: Pauluhn and Solanki (2007) (PSM)

Decay+Rise time scale of flare: τ E-folding time scale; fixed for a pixel **Probability of flare: flaring frequency p**_f Exponentially distributed waiting times

Inversion recipe: Convolutional Neural Network (CNN)

- Statistical model: No point-by-point comparison.
- Qualitative comparison: Histogram and Power spectrum.
- Quantify: Using Convolutional Neural Networks (Szegedy et al. 2015)

Feed the data!			Identifier			DS1			DS2
			Start time			2011-08-14 T00:00:00			2019-05-02 T00:00:00
			End time			2011-08-14 T08:00:00			2019-05-02 T08:00:00
Observation dataset			Reference time			2011-08-14 T00:00:00			2019-05-02 T00:00:00
			Xcen, Ycen			192", 749"			19.0", 211.5"
			FOVx, FOVy			230", 116"			346.0", 269.0"
~300,000 light curves, 3 passbands			Instrument			AIA			AIA
			Passband			171,193, 211			171, 193, 211
			Exposure normalize			True			True
			Cadence			12 s			12 s
Parameter	p _f	ρ _f α		τ		nax	У _{тіп}		
Range	[0.05,0.95)	0.05,0.95) [1.1,3.0)		[1,100)			0.03		Simulation grid
Step size	0.05 0.1		2.0		-		-		

Results #1: Inversion of example light curves

Results #2: Parameter distributions

Frequency: Mean waiting time is 30 sec.

Cooling times: 600 sec.

Impulsive events: Viable source of heating in the Quiet corona.

Salient takeaways

- 1. QS intensities: Can be explained using an empirical impulsive heating model.
- 2. Average waiting time: 30 sec.
- 3. Average cooling time: 600 sec.
- 4. The average nanoflare intensity dependence on flaring frequency points to the existence of an energy reservoir.
- 5. The average nanoflare intensity dependence on flaring time scale can be explained if Conductive loss is dominant.
- 6. Caveat #1: y_{max} and y_{min} need to be fixed model does not train well if all parameters varied.
 - a. Degeneracy amongst y_{max} , y_{min} and α .
- 7. Caveat #2: Energy bounds not in ergs \rightarrow needs calibration for correct estimation.
- 8. Caveat #3: ~ 30% of light curves have $\alpha < 2 \rightarrow$ needs study.