Rosseland Centre for Solar Physics

New insights from umbra modelling and new questions for cycle 25

Vasco M. J. Henriques, Sven Wedemeyer, Mikołaj Szydlarski, Jaime de la Cruz Rodríguez Rosseland Centre for Solar Physics, Univ Oslo ESPM, Rome, Italy, 8 September 2021

This work is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 682462).

Umbral flash semi-empirical modelling featuring opposite sign flows agrees with classical simulations

Henriques et al. (2020)

it is a natural outcome of steepening waves and evidence beyond inversions of the downflowing region contributing to formation is found in Bose et al. (2019), Henriques et al. 2020 and Felipe et al. (2021)

Bard and Carlsson (2010)

...but velocity stratification GREATLY simplifies with resonant cavities for which there is independent empirical evidence (Jess et al 2019, Felipe et al. 2019)

from Felipe et al. (2021)

...so we have to consider again the possibility of simpler monotonic stratifications at the instant of the flash

Grey scale is the density of atmospheres

Downflowing models

Socas-Navarro (2001) Henriques et al. (2017) Houston et al. (2019) **Bose et al. (2019)**

Upflowing models

Socas-Navarro (2001) d.l.c.Rodríguez and R.v.d.Voort (2013) Henriques et al. (2017) Houston et al. (2019) **Joshi et al. (2020)**

LTE investigation necessary! (Henriques et al., 2020)

SSUB B

10

-20 10 20 0 -10 Δ [km s⁻¹]

2.0

1.5

0.5

o.1.0 ≺

ŝ

2.00

SDF up phase (t = -90 s)Blue wing Velocity map

sec

X [arc-sec]

0.0 0.5 1.0 1.5 2.0 X [arc-sec]

Corrugated umbra model

but! Corrugated Umbra model implication: the flashing process itself is incredibly fine-scaled in space and time, not captured by simulations Velocity [km s⁻¹]

Solution

- observations (SST) -> small but full cube delta manipulation on all profiles and weights to trigger local solutions (i.e. allow degeneracy to go one way or the other for larger areas) -> invert models (NICOLE) -> mm radiative transfer (ART) + ALMA configuration-dependent realistic beam shapes

 - **Testable ALMA predictions to resolve non-LTE caused degeneracy**

SST

ALMA from SST

Forecasting an UF in ALMA from SST observations

Quiescent

Flash

Downflow dominated

Quiescent phase

Upflow dominated

ALMA synthetics for two umbral flash scenarios

T = 7078Band 7 C-4

T = 7764Band 6 C-4 T=9830 Band 3 C-4

T=9286 Band 3 C-4

Downflow dominated

Upflow dominated

6.0 T in kK 5.0 5.5

6.5

7.0 5.5

T=7764 Band 6 C-4

6.5 T in kK

б.О

7.0

T=9830

Downflow dominated

Quiescent phase

Upflow dominated

ALMA synthetics for two umbral flash scenarios

T = 7078Band 7 C-4

T = 7764Band 6 C-4 T=9830 Band 3 C-4

T=9286 Band 3 C-4

Distinction in Band 3 is not possible at array configuration 3 or lower, but possible in Band 6 despite **lower delta T**

Downflow dominated

Quiescent phase

СS

R

Upflow dominated

T = 6724

A conditional prediction

Should cavity effects be important for umbral flashes, then Band 3 brightness temperatures will exceed 9500 K for the vast majority of time-resolved ALMA sunspots in the early flash stage, provided array config better than C-3.

Likewise and with the same conditionality, Band 6 will exceed 7900 K for all array configurations.

If cavities are **not** important, then these temperatures will be rarely obtained at any flash stage of the ALMA observed umbra.

Takeaways

- ·Sensitivity to different UF models starts at such a low height as that sampled by Band 6 due to significant contribution above log tau 500 = -3.
- Band 3 has higher response where models diverge but the lower resolution leads to significant mixing of real UF fine-structuring as sampled with SST resolution and not present in simulations. For "down vs up" it is as good as Band 6.
- •Umbral flashes can explain mm enhancement, need time series
- ·Band 7 should be remarkably detailed but upper photospheric in sunspots
- •Semi-empirical data, provides a path to synthetics that give insights not possible with those produced from simulations. More than guide they help interpret observations taken with very different instruments.

Two ALMA sunspots

Dec 16 2015 18:09:	:21	Int	Dec 16	2015	18:09:21	HLMH 304	A Int	Dec	16 2015	50) and 1.2 18:09:30	23 mm 1600
Charles B										C. Series	
76 6 14				6							
1000	8	- and			a de					to a state	
a second		3.5							ind		
2000		100		E p						Same (
the state of the		22							4 2	and the second	
		A	1-2						4 52		
和4.445			Hard								
Dec 18 2015 19:23:	:13	Int	Dec 18	2015	19:23:09	304	A Int	Dec	18 2015	19:23:06	1600
Street Street											
			2		11/100						
		10									
there are			A.S.					7R.		Country	perile.
the second									in the second	and the	
	1000		1 A								
										4	

ALMA Sunspots, 3mm (top) and 1.25 mm (bottom), H-alpha, HMI and AIA images 250" x 250" nt Dec 16 2015 18:09:21 304 A Int Dec 16 2015 18:09:30 1600 A Int Dec 16 2015 18:09:34 6563 A Int Dec 16 2015 18:09:24 171 A Int Dec 16 2015 18:09:37 6173 A Mag

compilation courtesy of Prof. Alissandrakis (Uol)

So we are looking forward for high-cadence high-resolution sunspots. Like the ones in the Solar ALMA Science Archive (SALSA)

check it out!

sdc.uio.no/salsa

(3)	(7)	(1)	(7)	0	0	(3)	(7)	0	0	(7)	(7)	(7)	(7)	(7)
No 0	Date 0	۲ Project ID	Band /λ	Cad.	Obs. Time (UTC) 0	(x,y)	μ ο	T _{mean} (K)	bmin ⁽²⁾ / bmaj o	Time Series	Data	Co- Obs	U Thumbnail	SD Thumbnail
D01	2016- 12-22	2016.1.00423.5	3/3 mm	2 sec	14:19:31- 15:07:07	0,0	0.99	7387 ± 519	1.37 / 2.10	D MOVIE	& DOWNLOAD	SDO		
D02	2017- 04-22	2016.1.00050.S	3/3 mm	2 sec	17:20:13- 17:42:37	-249,267	0.92	9317 ± 1229	1.69 / 2.21	D MOVIE	& DOWNLOAD	SDO IRIS		
D03	2017- 04-23	2016.1.01129.5	3/3 mm	2 sec	17:19:19- 18:52:54	-54,251	0.95	7161 ± 1817	1.92 / 2.30	D MOVIE	& DOWNLOAD	SDO IRIS	Ð	
D04	2017- 04-27	2016.1.01532.5	3/3 mm	2 sec	14:19:52- 15:31:17	520,272	0.78	7974 ± 1145	1.747 2.23	D MOVIE	& DOWNLOAD	SDO IRIS	٢	
D05	2017- 04-27	2016.1.00202.8	3/3 mm	2 sec	16:00:30- 16:43:56	172, 207	0.96	7287 ± 1297	1.77 / 1.88	D MOVIE	& DOWNLOAD	SDO IRIS		
D06	2018- 04-12	2017.1.00653.S	3/3 mm	1 sec	15:52:28- 16:24:41	-128,400	0.90	7586 ± 661	1.77 / 2.55	Þ MOVIE	& DOWNLOAD	SDO IRIS	Ż	
D07	2017- 04-18	2016.1.01129.5	6/1 mm	2 sec	14:22:01- 15:09:15	-573,230	0.76	7167 ± 1158	0.75 / 2.03	D MOVIE	& DOWNLOAD	SDO IRIS		
D08	2017- 04-22	2016.1.00050.8	6/1 mm	2 sec	15:59:07- 16:43:26	-261,266	0.92	7496 ± 1014	0.68 / 0.85	D- MOVIE	& DOWNLOAD	SDO IRIS		
D09	2018- 04-12	2017.1.00653.S	6/1 mm	l sec	13:58:57- 14:32:27	-175,-415	0.88	5700 ± 333	0.80 / 2.22	D MOVIE	& DOWNLOAD	SDO IRIS		
D10	2018- 08-23	2017.1.01672.5	6/1 mm	I sec	16:24:27- 17:18:05	68,211	0.97	6104 ± 497	1.69 / 2.21	D MOVIE	& DOWNLOAD	SDO IRIS		No SD for this set
DII	2017- 03-16	2016.1.00572.8	3/3 mm	I sec	15:22:33- 15:32:37	-679, 679	0	7263* ± 148	2.55 / 4.43	Þ MOVIE	& DOWNLOAD	SBO		
D12	2017- 03-19	2016.1.00030.S	3/3 mm	2 sec	18:16:02- 19:10:13	-493,-46	0.86	7364 ± 302	2.52 / 5.06	D- MOVIE	& DOWNLOAD	SDO IRIS	÷.	No SD for this set
D15	2018- 08-23	2017.1.01672.8	6/1 mm	1 sec	17:37:00- 18:15:57	79,-238	0.87	5814 ± 267	0.827 1.31	D MOVIE	& DOWNLOAD	SDO IRIS		No SD for this set
D16	2017- 03-16	2016.1.00572.8	3/3 mm	2 sec	16:58:00- 17:06:40	-581,-588	0.50	7371 ± 186	2.70 / 4.32	D MOVIE	& DOWNLOAD	SDO	Ø,	
D17	2017- 03-16	2016.1.00572.8	3/3 mm	2 sec	18:40:51- 18:50:56	-383,-407	0.82	7323 ± 241	2.54 / 5.17	D MOVIE	& DOWNLOAD	SDO IRIS	Ť	
D18	2017- 03-16	2016.1.00572.8	3/3 mm	2 sec	17:59:04- 18:09:08	-468,-484	0.72	7296 ± 251	2.52 / 4.85	D MOVIE	& DOWNLOAD	SDO	Ř	
D19	2017- 03-16	2016.1.00572.8	3/3 mm	2 sec	19:23:00- 19:33:05	-261,-295	0.91	7416 ± 234	2.46 / 5.77	D MOVIE	& DOWNLOAD	SDO	Ð	
D20	2017- 03-16	2016.1.00572.8	3/3 mm	2 sec	16:14:48- 16:24:53	-686,-666	0.13	4475 ± 256	2.49 / 4.56	D MOVIE	& DOWNLOAD	SDO	Ð	
D21	2018- 12-20	2018.1.01763.S	6 / 1 mm	l sec	13:19:19- 14:07:32	880,200	0.38	6181 ± 208	0.60 / 1.05	D MOVIE	& DOWNLOAD	SDO IRIS		
D22	2018- 12-22	2018.1.01879.S	6 / 1 mm	l sec	15:09:14- 15:14:57	-2,0	1.00	6310 ± 185	0.73 / 1.99	D MOVIE	& DOWNLOAD	SDO		
D23	2017- 04-23	2016.1.01129.5	6 / 1 mm	2 sec	14:23:55- 15:11:06	-860,-129	0.41	6643 ± 396	0.71 / 1.72	D MOVIE	& DOWNLOAD	SDO IRIS		
D24	2017- 03-19	2016.1.00030.S	3/3 mm	2 sec	15:32:32- 16:26:52	-493,-46	0.84	7461 ± 421	2.65 / 4.39	D MOVIE	& DOWNLOAD	SDO IRIS		No SD for this set
D25	2017- 03-19	2016.1.00030.S	3/3 mm	2 sec	16:52:52- 17:47:11	-483,-45	0.85	7387 ± 415	2.48 / 4.31	D MOVIE	& DOWNLOAD	SDO IRIS	ŝ	No SD for this set
D26	2018- 04-12	2017.1.00653.S	3/3 mm	I sec	16:43:52- 17:16:06	-131,-400	0.90	7553 ± 360	1.84 / 2.82	D MOVIE	& DOWNLOAD	SDO IRIS	Ť	
D27	2018- 04-12	2017.1.00653.S	6/1 mm	I sec	14:51:20- 15:25:01	145,-400	0.90	5899 ± 157	0.89 / 2.01	D MOVIE	& DOWNLOAD	SDO IRIS	٢	
D28	2017-	2016 1 00788 5	6/1	Line	15:09:20-	-190 347	0.91	6157 ±	1.05 /			SDO	62	

Show 50 + entries

Bonus online material for fun

See the SDFS + SSUBS from Nelson et al. 2017 and Henriques et al. 2020 in a PDF time series

(play with arrow keys in single page mode on your favourite viewer)

Small-scale umbral brightenings (SSUBs) are distinct from Bharti et al. (2013) umbral microjets as the latter seem to be genuine ejections and likely reconnection events (Bharti et al., 2020) and the former are brightenings at the base of short-dynamic fibrils (SDFs), either ahead or delayed from the umbral flash and, together with other evidence presented in Henriques et al. (2020), are formed as part of a highly corrugated steepening wave-front, interacting with the mass movements of the short dynamic fibrils.

t=10mn Oss

t=10mn15ss

t=10mn30ss

t=10mn45ss

red wing at 156 mÅ

t=11mn Oss

red wing at 156 mÅ

t=11mn30ss

red wing at 156 mÅ

t=11mn45ss

Now just two frames, central flash, lots of SDFs, followed by SSUBs

red wing at 156 mÅ

t=34mn30ss

red wing at 156 mÅ

t=34mn30ss

