UiO University of Oslo

Effects of spatial resolution on Stokes profiles

Tiago M. D. Pereira Thore E. Moe Mats Carlsson

Rosseland Centre for Solar Physics (RoCS), Institute of Theoretical Astrophysics

Introduction

Both numerical simulations and experimental observations of the solar atmosphere are limited by finite resolution. However the real physics of the sun are under no such limit. Thus sub-resolution processes may be expected to affect the spectra we observe beyond what can be captured by a numerical simulation of the same nominal resolution. Here, we attempt to quantify and qualify the effects of such sub-resolution processes on observed Stokes profiles, and the physical parameters of the solar atmosphere inferred from those profiles.

Conclusions

- Differences between simulations persist even after spatial degradation.
- Mainly small-scale fine-structure the larger picture doesn't change much.
- Higher resolution gives more concentrated "hotspots" of more extreme velocities/field strengths.

Method

- \blacksquare Run the same Bifrost [1] simulation at different resolutions (6) km, 12 km, 23 km)
- Synthesize Stokes profiles for Fe 617.3 nm and Ca 854.2 nm, using Rh1.5D [2]
- Spatially degrade and downsample these profiles
- Use center-of-gravity [3] and weak-field-approximation [4] to infer line-of-sight magnetic field strengths and velocities from the degraded spectra.

- These extreme values also become more extreme with higher resolution.
- Same tendency displayed in both photosphere and chromosphere.

References

[1] Gudiksen, B. V., Carlsson, M., Hansteen, V. H., et al. 2011, A&A, 531, A154

[2] Pereira, T. M. D. & Uitenbroek, H. 2015, A&A, 574, A3

[3] Uitenbroek, H. 2003, ApJ, 592, 1225

[4] Centeno, R. 2018, ApJ, 866, 89

Results

Inferred line-of-sight velocities and magnetic fields for the photospheric Fe I 617.3 nm (*):

Inferred line-of-sight magnetic fields for the chromospheric core of Ca II 854.2 nm (*):

Rosseland Centre for Solar Physics

(*): The colormaps on the left are zoomed in on a quarter of the simulations' full extent for ease of visual comparison; the distribution histograms, conversely, cover the whole field of view for the simulations.