Evidence of chromospheric molecular hydrogen emission in an IRIS flare

Dr. Sargam Mulay¹, Prof. Lyndsay Fletcher^{1,2}

¹School of Physics and Astronomy, University of Glasgow, UK

²Rosseland Centre for Solar Physics, University of Oslo, P.O.Box 1029 Blindern, NO-0315 Oslo, Norway

(Mulay S. M., Fletcher L., 2021, MNRAS, 504, 2842)

Dr. Sargam Mulay (email: Sargam.Mulay@glasgow.ac.uk)

University of Glasgow, UK

Overview

- \bullet Formation of molecular hydrogen H_2 emission
- \bullet Chromospheric H_2 emission observed in an IRIS flare
- Summary
- Future research plan

Emission from molecular hydrogen H₂ in solar atmosphere

Results from non-LTE model

• Temperature stratification plays the dominant role in determining the population densities of H₂, which forms in greatest abundance near the continuum photosphere.

• Opacity due to the photoionization of Si and other neutrals determines the depth to which UV radiation can penetrate to excite the H_2 .

• The majority of H_2 emission forms in a narrow region, at about 650 km above the photosphere in standard one-dimensional (1D) models of the quiet Sun.

can originate.

Details of H_2 emission lines observed by IRIS in C II and Si IV windows

	(Column 1)	(Column 2)	(Column 3)	(Column 4)	(Column 5)	(Column 6)	(Column 7)	(Column 8)	
	Η ₂ λ (Å)	Transition (v' - v'')	Branch $(\Delta J = \pm 1)$	Exciting line λ (Å)	Observed solar regions	Instruments	FWHM (Å)	References	• Rotational quantum no.: (a) For P , $\Delta J = -1$
(1333.475	0-4	R0	Si IV 1393.76	Sunspot Flare Sunspot	HRTS Skylab HRTS	0.099	Jordan <i>et al.</i> (1977, 1978) Cohen <i>et al.</i> (1978) Bartoe <i>et al.</i> (1979)	(b) For R , $\Delta J = +1$ • Vibrational quantum no.:
(1333.797	0-4	R1	Si IV 1402.77	Umbra, quiet region, limb Flare Sunspot Sunspot Flare	HRTS + Skylab IRIS HRTS HRTS IRIS		Sandlin <i>et al.</i> (1975) Li <i>et al.</i> (1986) Jordan <i>et al.</i> (2016) Bartoe <i>et al.</i> (1977) Li <i>et al.</i> (2016)	(a) $v' = upper rever (b) v'' = lower level H2 1333.475 Å - faint H2 1333.797 Å - strong$
,	1393.451	0-4	P10	C II 1334.53	Sunspot Plage, umbra	HRTS HRTS + Skylab	-	Jordan <i>et al.</i> (1977) Sandlin <i>et al.</i> (1986)	• Columns 1-3 - Sesam molecular spec- troscopy database -
	1393.719	0-5	R0	Si IV 1393.76	Sunspot	HRTS	-	Jordan <i>et al.</i> (1977)	http://sesam.obspm.fr/.
	1393.961	0-5	R1	Si IV 1402.77	Sunspot	HRTS	-	Jordan <i>et al.</i> (1977)	• Column 4 - adapted from the report on molecular
	1400.612	0-5	R4	O IV 1399.77	Umbra, quiet region, limb	HRTS + Skylab	-	Sandlin <i>et al.</i> (1986) Bartoe <i>et al.</i> (1979)	hydrogen by Prof. Peter Young. Link:
	1402.648	0-5	P3	Si IV 1402.77	Umbra	HRTS	_	Jordan <i>et al.</i> (1977) Bartoe <i>et al.</i> (1979)	https://pyoung.org/iris/
	1403.381 1403.982	2-6 0-4	R2 P11	O V 1371.29	Umbra, quiet region, limb Light-bridge	HRTS + Skylab HRTS	_	Sandlin <i>et al.</i> (1986) Bartoe <i>et al.</i> (1979)	
	1404.750	0-5	R5	O IV 1404.81	Sunspot	HRTS	-	Bartoe <i>et al.</i> (1979) Bartoe <i>et al.</i> (1979)	

Dr. Sargam Mulay (email: Sargam.Mulay@glasgow.ac.uk)

Evidence of chromospheric molecular hydrogen emission in an IRIS flare (2021, MNRAS, 504, 2842)

- First comprehensive investigation of enhanced line emission from molecular hydrogen, H_2 at 1333.79 Å, observed at flare ribbons
- The cool H_2 emission is known to be fluorescently excited by Si IV 1402.77 Å UV radiation and provides a unique view of the temperature minimum region (TMR).
- \bullet Since Si IV is strong in flares, this should provide a good H_2 signal

Research objective

- \bullet Behaviour of H_2 emission at flare ribbon during various phases of the flare
- \bullet The correlation between H_2 and Si IV emission
- \bullet Properties of cool plasma from H_2 spectral line
- The optical properties of plasma to the outwardgoing radiation, using the ratio of the two Si IV line intensities

(d) SJI SI IV 1402 Å 12:44:13 UT

Evidence of chromospheric molecular hydrogen emission in an IRIS flare

IRIS spectral images - southward movement of southern ribbon in SJI images

- H_2 emission becomes visible when the Si IV 1402.77 Å becomes bright.
- R1 The H_2 line is strongest during the flare impulsive phase, dims during the GOES peak, and brightens again during the gradual phase.
- \bullet R2 Si IV is strong but at the same time and location ${\sf H}_2$ is faint.

Parameters derived from H $_2$ 1333.79 Å line observed at Ribbon 1

Slit position	Y-pixel	Time	Centroid	FWHM	V _{nth}	V _{Doppler}
Number	Number	(UT)	(Å)	(Å)	(km s $^{-1}$)	$(km s^{-1})$
54	672-681	12:41:56	1333.8015	$0.056{\pm}0.013$	10.14 ± 3.7	1.21 ± 1.5
57	674-678	12:42:24	1333.7981	$0.066{\pm}0.016$	$13.06{\pm}4.0$	0.4±1.8
63	667-673	12:43:21	1333.8035	$0.065 {\pm} 0.012$	$12.58 {\pm} 3.1$	1.7 ± 1.3
70	668-672	12:44:27	1333.8121	$0.079 {\pm} 0.029$	$16.19{\pm}7.2$	3.5±3
71	668-673	12:44:36	1333.8073	$0.037{\pm}0.021$	$7.19{\pm}3.4$	2.5 ± 1.5
75	666-670	12:45:13	1333.7983	$0.065 {\pm} 0.018$	$12.75 {\pm} 4.6$	$0.5 {\pm} 1.9$
76	665-669	12:45:23	1333.8072	$0.086{\pm}0.030$	$17.67 {\pm} 7.5$	2.4 ± 3.1
77	664-668	12:45:32	1333.7977	$0.042{\pm}0.015$	6.69 ± 3.5	$0.35 {\pm} 1.6$
80	663-668	12:46:01	1333.7905	$0.053{\pm}0.016$	$9.16{\pm}4.6$	-1.26 ± 1.7
85	661-663	12:46:47	1333.8049	$0.065 {\pm} 0.018$	$12.50{\pm}4.6$	$1.9{\pm}1.8$
92	659-663	12:47:53	1333.7911	$0.084{\pm}0.028$	$17.45 {\pm} 6.8$	-1.13 ± 2.7
93	659-662	12:48:03	1333.7879	$0.063{\pm}0.018$	$12.24{\pm}4.6$	$-1.84{\pm}1.9$
97	655-660	12:48:40	1333.8018	$0.054{\pm}0.015$	$9.80{\pm}4.2$	$1.3 {\pm} 1.6$
98	655-662	12:48:50	1333.8018	$0.078 {\pm} 0.020$	$16.05{\pm}4.9$	$1.3{\pm}2.03$
99	655-662	12:48:59	1333.8044	$0.071 {\pm} 0.017$	$14.07 {\pm} 4.3$	$1.86{\pm}1.83$
100	656-661	12:49:08	1333.8004	$0.044{\pm}0.016$	$7.02{\pm}4.1$	$0.96{\pm}1.6$
109	654-659	12:50:33	1333.8179	$0.071 {\pm} 0.029$	14.1 ± 7.4	4.9±2.9
111	654-657	12:50:52	1333.7956	$0.044{\pm}0.017$	$7.2{\pm}4.1$	-0.11 ± 1.92
113	653-660	12:51:10	1333.8109	$0.054{\pm}0.020$	$9.17{\pm}6.0$	3.3 ± 2.1
114	654-663	12:51:20	1333.7995	$0.059{\pm}0.018$	$11.12{\pm}4.9$	$0.76{\pm}2.0$
115	654-659	12:51:29	1333.8036	$0.060{\pm}0.020$	$11.36{\pm}5.3$	$1.6{\pm}2.03$
116	650-660	12:51:39	1333.7965	$0.060{\pm}0.014$	$11.49{\pm}3.8$	$0.08{\pm}1.6$
117	650-661	12:51:48	1333.7978	$0.075 {\pm} 0.015$	$15.34{\pm}3.7$	$0.4{\pm}1.6$
118	650-660	12:51:57	1333.8037	$0.065 {\pm} 0.012$	$12.84{\pm}3.1$	$1.7{\pm}1.3$

• The H $_2$ 1333.79 Å line is broad.

• Non-thermal speeds = 7-18 km/s.

• Measured H_2 Doppler shifts are consistent with zero within the errors, indicating negligible bulk flows along the line-of-sight.

Correlations between the exciter wavelength and the fluorescent emission

Correlations between the exciter wavelength and the fluorescent emission

H₂ emission at Ribbon 2

- Ribbon 2 is very bright at Si IV 1402.77 Å, but the H_2 at the same time and location is faint.
- It may be that the opacity of the chromosphere down to this level at the R2 location is higher than at the R1 location.
- Ribbon 1 crosses a plage region, whereas; Ribbon 2 crosses a spot penumbra, which would be expected to have different temperature, density and hence, opacity structures.

Optical properties of plasma - the ratio of the two Si IV line intensities

Flare simulations

• A ratio of 2 normally indicates an optically thin plasma.

• However, detailed flare radiation hydrodynamics simulations by Kerr *et al.* (2019) demonstrate that opacity effects can lead to a range of ratios from 1.8 to 2.3.

Si IV ratio results

• At R1, ratio = 2 (during the impulsive phase) - indicates an optically thin plasma.

• At R1, ratio = 1.8 - 2.0 (at GOES flare peak) - indicates an increase in the opacity effects (Mathioudakis et al. 1999)

• At R2, where ratio > 2.0 - a contribution from resonant scattering (Gontikakis & Vial 2018)

Summary - Mulay S. M., Fletcher L., 2021, MNRAS, 504, 2842

- H₂ emission was observed in flare ribbons GOES M7.3 X-ray flare
 - H₂ line is strongest during the flare impulsive phase, dims during the GOES peak, and brightens again during the gradual decay phase.
- The H₂ line is broadened,
 - corresponding to non-thermal speeds in the range 7-18 km/s.
- H₂ Doppler shifts are consistent with zero within the errors, indicating negligible bulk flows along the line-of-sight.
- From the ratio of Si IV (1393.76/1402.77), we deduce that
 - the plasma is optically thin to Si IV (where the ratio = 2) during the impulsive phase of the flare in locations where strong H₂ emission was observed.
 - In contrast, the ratio differs from optically thin value of 2 in parts of ribbons, indicating a role for opacity effects.

Conclusions

• A strong spatial and temporal correlation between H_2 and Si IV emission was evident supporting the notion that fluorescent excitation is responsible.

- H_2 emission gave a new view of conditions in the temperature minimum region (TMR) during flare.
- Our study is useful for constraining further models of the chromosphere and TMR during flares.

Future research plans

 \bullet IRIS H_2 emission in various C, M and X-class flares and relationship with Si IV emission.

• Jaeggli et al. 2018 - UV opacity is dominated by the photoionisation of neutral C and S.

 \bullet Investigation of IRIS C I 1354.29 Å and S I 1401.51 Å and relation with H_2.

Key references

Abgrall H., et al., 1993a, A&AS, 101, 273
Abgrall H., et al., 1993b, A&AS, 101, 323
Bartoe J. D. F., et al., 1979, MNRAS, 187, 463
Cohen L., et al., 1978, ApJS, 37, 393
Innes D. E., 2008, A&A, 481, L41
Jaeggli S. A., et al., 2018, ApJ, 855, 134
Jordan C., et al., Nature, 270, 326
Jordan C., et al., 1978, ApJ, 226, 687
Sandlin G. D., et al., 1986, ApJS, 61, 801
Schüehle U., et al. eds, ESA Special Publication
Vol. 446, 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona. p. 617

Acknowledgements

• We acknowledge support from the UK Research and Innovationâs Science and Technology Facilities Council (STFC) under grant award numbers ST/P000533/1 and ST/T000422/1.

• We would like to thank Dr. Peter Young (NASA), Dr. Giulio Del Zanna, and Dr. Helen Mason (University of Cambridge, UK) for the discussion and valuable comments.

• IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operations executed at NASA Ames Research center and major contributions to downlink communications funded by ESA and the Norwegian Space Centre.