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Past 3D solar wind simulations:
 Global models

- Driven by approximated equations for Alfvén waves and their turbulent
dissipation (e.g. AWSOM, Van Der Holst et al. 2014, MAS, J. Linker et al., PSI)

e Reduced MHD models

- No background inhomogeneity across the magnetic field, no velocity
perturbation along the field. Basically, Alfvén wave dynamics and turbulence
(Van Ballegooijen & Asgari-Targhi 2016, Chandran & Perez 2019, etc.)
 Compressible MHD

- Considering full compressible MHD dynamics, no background

inhomogeneity across the field (e.g. Shoda et al. 2019, Matsumoto et al.
2021)

o
fwo prr—
| ESPM-16, 9t of September 2021



The solar wind is inhomogeneous across B

4 to 10
Solar radii

Data credit: (STEREO-A)/COR2, Craig DeForest, SwRI
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Inhomogeneous MHD allows for:

e Surface and body (global) waves (e.g., surface Alfvén, kink)
* Mode coupling (res. absorption) and mixed properties
* Phase mixing

* Turbulence of unidirectionally propagating waves (Magyar et al.
2017,2019; Van Doorsselaere et al. 2020)
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Inhomogeneous 3D MHD solar wind simulation:

 MPI-AMRVAC

e Full 3D MHD

« 1.07to 15 Ro

e 18° wide

e Alfvén point at 12 Ro

* Relaxed to steady
inhomogen. wind

* Driver with k=1-4 at
bottom bound.

* VV\rms = 15 km/s

* 1024x256"2
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Energy spectra
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* Perp. Energy spectra -3/2 or-5/3 Par. energy spectra -2

 Magnetic field spectra steeper than vel. v/
f. Z spectra steeper than measured
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Energy spectra evolution in time and with r
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* |nitially a 1/f spectrum due to linear phase mixing
* |n the statistically steady state, it evolves towards -5/3.
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Homogeneous vs. inhomogeneous turbulence

* Same domain, same wave driver, no structuring
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Spectral power (code unit)

e Energy spectra in the homogeneous setup | inhom.
at the end of the simulated time =~ —3
* Cascade to smaller scales, both linear — S
and nonlinear, much faster in the ﬁ o
inhomogeneous setup =2 uniturbulence g
cascade rate higher than AWT. : hom.
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Conclusions

 Background structuring has a strong effect on the evolution of MHD
turbulence in the nascent solar wind, on faster timescales than in the
perpendicularly homogeneous case.

 1/f spectrum may be due to phase mixing of slowly cascading waves.

e Self-cascade of kink waves the dominant nonlinear cascade channel in the
pristine solar wind?

* Remaining questions: heating? is the self-cascade identifiable in in-situ
data?
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