16th European Solar Physics Meeting Thursday, 09 September 2021

Thermal structure of Coronal Bright Points at their base in the low transition region

Nikolina Milanović¹, Hardi Peter¹, Lakshmi Pradeep Chitta¹, Peter R. Young² and the SPICE team milanovic@mps.mpg.de

¹ Max Planck Institute for Solar System Research, Göttingen
² NASA/GSFC, USA & Northumbria University, UK

Solar spectra with SPICE

C III 97.7 nm

Intensity image of the quiet-Sun from SPICE

Average guiet-Sun spectrum in range that SPICE can cover

Field of view: (210 x 270) Mm

Observation from 28 May 2020

C III 97.7 nm

Intensity image of the quiet-Sun from SPICE

Line-of-sight magnetic field from HMI

AIA in 171 Å band (mostly coronal emission)

Advantages of SPICE

Previous spectrometers:

no simultaneous coverage of temperatures from $\log T = 4$ to 6

- \rightarrow SPICE can constrain the emission measure (EM) down to logT = 4.5
- Particularly important to constrain the slope towards lower temperatures
- When possible, it can be extended with AIA up to logT = 6.5

Structure of the bright points

Intensity image of the quiet-Sun from SPICE

Zoom-in: (24.5 x 24.5) Mm

4/9

Selecting the bright point

C III 97.7 nm

Intensity image of the quiet-Sun from SPICE

Zoom-in: (24.5 x 24.5) Mm

5/9

Average spectrum of a bright point

Intensity image of the quiet-Sun from SPICE

Zoom-in: (24.5 x 24.5) Mm

6/9

Emission measure loci of BP and QS

- QS EM loci follow the expected variation
- BP shows higher EM, as expected
- But stronger enhancement of the BP EM at lower temperatures

Emission measure loci of BP and QS

- QS EM loci follow the expected variation
- BP shows higher EM, as expected
- But stronger enhancement of the BP EM at lower temperatures
- Results are consistent across all BPs

Conclusions

- SPICE observations can provide insights into the heating processes
- Despite their name, these results suggest that coronal BPs have a bigger impact at transition region temperatures
- Possibly most energy is input at low temperatures
- Build statistics, combine with AIA observations

Thank you!