

Sonnenphysik (KIS)

Institute of the Czech Academy of Sciences

THE ROLE OF MAGNETIC FIELDS IN THE **EVOLUTION OF PORES**

Marta García Rivas^{1,2}, Jan Jurčák¹, Nazaret Bello González³

¹Astronomical Institute of the Czech Academy of Sciences, ²Astronomical Institute of Charles University, ³Leibniz-Institut für Sonnenphysik (KIS)

Motivation

Does Jurčák criterion apply to other magnetic structures?

Jurčák criterion: Empirical law that states that umbra-penumbra (UP) boundaries of stable sunspots can be defined by a vertical magnetic field threshold that matches the continuum intensity boundary. This criterion implies that in regions with $|B_{ver}| > B_{crit}$, umbral mode of convection prevails. On the other hand, regions with $|B_{ver}| < B_{crit}$ are unstable and prone to vanish against other modes of magneto-convection.

Formation of sunspots:

UP boundary migrates towards the center of the umbra until it reaches a stable position. $|B_{ver}|$ on the boundary increases during the migration until it stabilizes, i.e., penumbra invades only umbral areas with weak $|B_{ver}|$.

Figure 1: Dark blue to light blue, variation of the UP boundary with time in forming (left and middle) and stable sunspots. Jurčák et al. (2015)

Stable sunspots:

UP boundaries fluctuate around a mean position due to the dynamical properties of penumbral filaments. |B_{ver}|, however, remains constant.

Figure 2: Stable sunspot with intensity and magnetic contours. $I_c = 0.5 I_{QS}$ in white. $B_{ver} = 1867$ G in red. <u>Jurčák et al. (2018)</u>

Decaying sunspots:

UP boundary migrates towards the center of the umbra until the sunspot disappears. $|B_{crit}|$ contour is located well inside the umbral area and it migrates towards the center of the umbra. The mean $|B_{ver}|$ gets weaker.

Figure 3: Decaying sunspot with intensity and magnetic contours. $I_c = 0.5 I_{QS}$ in yellow. $B_{ver} = 1867$ G in green. <u>Benko et al. (2018)</u>

Marta García Rivas

6 - 10 September 2021

ESPM-16

Data and methodology

Requirements:

- Infer vector magnetic field
- Study boundary conditions
- Study temporal evolutions
- A homogeneous database → Sp
- \rightarrow Spectropolarimeter
- → Medium to high spatial resolution
- $\rightarrow\,$ Temporal cadence smaller than lifetimes of pores
- \rightarrow Space-based

Selected data: The Helioseismic and Magnetic Imager (HMI), provides full disc Stokes parameters that are inverted using a Milne-Eddington code (VFISV, <u>Borrero et al. 2011</u>) to provide photospheric physical parameters. The standard spatial resolution of ~1" can be improved by correcting the data for scattered light, i.e., data are deconvolved using a HMI PSF model. Therefore, we analyse hmi.B_dconS and hmi.Ic_dconS data series processed and provided by A. Norton.

The **boundary** of the structures are defined by a continuum intensity threshold (**0.55** I_{QS}) and magnetic properties along the isocontour are averaged. **Magnetic thresholds** are defined based on the averaged boundary properties.

Figure 4: Motivation to use HMI deconvolved data. Continuum intensity images of the studied solar pore on 18 March. $I_c = 0.55 I_{QS}$ contours in white. *Left*: Pore scanned at 19:48 UT with the spectropolarimeter onboard **Hinode**. *Middle*: **Standard HMI** map of the pore observed at 19:45 UT. *Right*: **Deconvolved HMI** map of the pore observed at 19:45 UT. <u>García-Rivas et al. 2021</u>

Case study: Lifetime of a pore

The studied solar **pore** appeared in the active region **NOAA 11175**. It is analysed during a **26.5-hour** span: from 09:24 UT on 18 March to 12:00 UT on 19 March 2011.

Figure at different 5: The pore evolutionary stages during its lifetime. Top Deconvolved continuum two rows: intensity maps. Third row: Magnetic field strength. Bottom row: Vertical magnetic field. White lines mark the analysed boundary (0.55 $\mathrm{I}_{\mathrm{QS}}).$ Blue lines mark the total magnetic field threshold ($B_{crit} = 1921$ G) and orange lines mark the vertical magnetic field threshold ($B_{ver,crit} = 1731$ G). The evolutionary stage of each frame is specified on top. García-Rivas et al. 2021

Marta García Rivas

Results

In this case study, the pore exhibits a stable phase (Sta). The maximum B_{ver} value, observed during the stable phase, is comparable to the maximum B_{ver} value found on UP boundaries. Therefore, we consider the mean B and B_{ver} during the stability stage as magnetic critical thresholds for the analysis (B_{crit} = 1921 G; B_{ver.crit} = 1731 G).

Figure 7: Temporal evolution of the areas encircled by I_c= 0.55 I_{os} (red), B_{crit} = 1921 G (orange) and B_{ver.crit} = 1731 G (blue). Vertical lines separate the proposed evolutionary stages.

Figure 8: Decay rates of the areas

1921 G (orange) and B_{ver.crit} = 1731

and the legend, the fitted coefficients.

Marta García Rivas

Results

In this case study, the pore exhibits a **stable phase (Sta)**. The maximum B_{ver} value, observed during the stable phase, is comparable to the maximum B_{ver} value found on UP boundaries. Therefore, we consider the mean B and B_{ver} during the stability stage as **magnetic critical thresholds** for the analysis ($B_{crit} = 1921$ G; $B_{ver,crit} = 1731$ G).

Figure 6: Temporal evolution of the averaged parameters along the boundary of the pore. Error lines represent the standard deviations. Vertical dashed lines separate the proposed evolutionary stages. Top: Magnetic field strength (**B**). Bottom: Vertical magnetic field (B,).

Marta García Rivas

Figure 7: Temporal evolution of the **areas** encircled by $I_c = 0.55 I_{QS}$ (red), $B_{crit} = 1921 G$ (orange) and $B_{ver,crit} = 1731 G$ (blue). Vertical lines separate the proposed evolutionary stages. <u>García-Rivas et al. 2021</u>

The temporal evolution of the magnetic properties and areas of the pore present different **stages** in this case study:

- **Formation I**: The pore grows while |B| and B_{ver} increase.
- Stability: The pore area evolves consistently with the areas limited by the magnetic thresholds.
- Formation II: The pore grows steeply in the northern region of the pore with weaker and more horizontal field. |B| and B_{ver} strengthen in the pore but not enough, therefore, we see a decrease of |B| and B_{ver} on the boundary.
- Decay: |B| and B_{ver} do not get strong enough in the newly emerged zone and it starts to decay. The northern region (with weaker |B| and B_{ver}) decays faster than the southern region.

Conclusions

- We find a similar behaviour of B_{ver} on UP boundaries and on pores during the evolutionary stages. We find a similar behaviour between B_{ver} and |B|.
- We find a critical value of the vertical magnetic field on pores.
- Only regions with |B_{ver}| < B_{ver,crit} are occupied by granulation (e.g. light bridge) in the lifetime of the pore.
- Regions with |B_{ver}| > B_{ver.crit} have, in general, longer lifetimes in the decay of a pore.
- In this case study, we find a similar behaviour between **B**_{ver} and **|B|**.
- ★ A statistical analysis is required to find out whether there is a critical value in other pores, whether |B| or B_{ver} is the stabilizing factor and its influence on pores lifetimes.

Related studies, e.g.: Benko et al. (2018), García-Rivas et al. (2021), Jurčák et al. (2020), Jurčák et al. (2017), Jurčák (2011), Lindner et al. (2020), Schamssmann et al. (2018)

On-going analyses: Transition sunspot - naked spots

The analysed sunspot appeared on the eastern limb in the active region **NOAA 12797** on 17 January 2021. Initially the sunspot was composed of two umbrae but, eventually, the penumbrae surrounding each umbrae separated permanently. The spots lost their penumbrae after 7 days -on 24 January- and the naked spots disappeared close to the western limb. We analysed these processes during **8 days**: from **00:00 UT on 19 January to 00:00 UT on 27 January 2021**.

Fig 8. Continuum intensity maps with intensity contour at 0.55Ic (white line). *First image*: sunspot on 19 January at 03:48 UT. *Second image*: decaying sunspots on 24 January at 04:36 UT. *Third image*: weak naked spots on 25 January at 02:00 UT. *Fourth image*: naked spots strengthened on 26 January at 01:36 UT.

Marta García Rivas

6 - 10 September 2021

E S P M -16

On-going analyses: Transition sunspot - naked spots

In this case study, the spots **do not exhibit a stable phase**. However, despite the decaying process, the **magnetic properties do not change significantly during the transition**. The naked spots undergo a weakening process (weaker magnetic field and irregular structure) after the disappearance of the penumbrae, followed by a strengthening process and permanent decay.

Figure 9: Temporal evolution of the averaged **parameters along the boundary** of the pore. Error lines represent the standard deviations. *Top*: Magnetic field strength (**B**). *Bottom*: Vertical magnetic field (B_{ver}).

Marta García Rivas

