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Thermally-induced condensations 1/7

Instead of solving the full radiative transport equations, precomputed
optically thin cooling curves are commonly used in multidimensional,
magnetohydrodynamic (MHD) simulations.
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Optically thin cooling curves 2/7

@ In the literature, there exists a
wide variety:
B Cox and Tucker (1969)
B Hildner (1974)
B Rosner et al. (1978)
B Colgan et al. (2008) 1
B Schure et al. (2009)
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@ They are often used as
unquestionable ingredients

Do optically thin cooling curves affect condensation formation
(by thermal instability)?




Numerical setup 3/7

e Open-source software
MPI-AMRVAC (see QR code)

@ Thermal equilibrium in a 2D
local coronal volume: 108 K,
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@ Perturbed by interacting
adiabatic slow MHD waves as
trigger for the thermal
instability
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o Finest resolution of 3 km, but
also at lower resolutions
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Benchmark simulation
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o Using SPEX_ DM cooling
curve (Schure et al., 2009)
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@ In the nonlinear phase, the
filament fragments in
locations of thin geometry
due to ram pressure
differences.

Want to watch the full simulation?
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Low-temperature (< 10 000 K) treatment 5/7

o Keeping temperature fixed
(Colgan)

@ Vanishing cooling rate E
(JCcorona) %t 10
o
o Extending by non-vanishing S0 T e
: Z —— Colgan
cooling rate (Colgan _DM) ol T
—> Strong effect on density and tem- fenperawe 9 o
. . =)
perature evolution of condensations, g
indirectly on fragmentation process. £ S
> g
=]
—— Colgan DM —— JCcorona —— Colgan 5
T g 10°
) o
510713 5 . .
g e Top right to bottom left and bottom right:
z ‘éﬂws Density views at the end of the evolution at
3 g a resolution of 12.5 km. They correspond
210’“ E to the Colgan DM, JCcorona, and Colgan
E E cooling tables, respectively.
g S
4000 6000 4000 6000

Time (s) Time (s)




Results for different cooling curves 6/7
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Conclusions 7/7

@ Condensations are formed by thermal instability for all cooling curves

@ Differences in timescales and morphology arise between simulations
with different cooling curves

@ The low-temperature treatment has a large influence on the
fragmentation. This emphasises the need of non-optically thin
treatment of cool plasma.

* The implementation of the cooling curve (interpolated table or
piece-wise power law) does not have a significant influence —> see
Hermans and Keppens (2021b)

We advocate the use of modern cooling curves, based on
accurate computations and up-to-date atomic parameters and

solar abundances.
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