Bayesian evidence for a nonlinear damping model for coronal loop oscillations

Iñigo Arregui

16th European Solar Physics Meeting

September 7 2021 - Poster Session 4.2

Damping of solar coronal loop oscillations

Observations

Damped transverse coronal loop oscillations

Analysis of large number of events

Empirical relationship between the damping and the oscillation amplitude

ModelsResonant Absorption (RA)Goossens et al. (2002) $\int_{a}^{b} \int_{a}^{b} \int$

Nonlinear Damping (NL) Van Doorsselaere et al. (2021)

$$\frac{\tau_{\rm d}}{P}\|_{M_{\rm NL}} = 20\sqrt{\pi} \,\frac{1}{2\pi a} \,\frac{1+\zeta}{\sqrt{\zeta^2 - 2\zeta + 97}}$$

Evidence

Marginal likelihood is a measure of relational evidence

$$p(D|M) = \int_{\boldsymbol{\theta}} p(\boldsymbol{\theta}, D|M) \, d\boldsymbol{\theta} = \int_{\boldsymbol{\theta}} p(D|\boldsymbol{\theta}, M) \, p(\boldsymbol{\theta}|M) \, d\boldsymbol{\theta}$$

 $p(D | M_{\rm NL}) \& p(D | M_{\rm RA})$

Bayes Factor is a measure of relative evidence

Kass & Raftery (1995)

Bayes factor	Evidence
0 - 2	inconclusive
2 - 6	positive
> 6	strong
> 10	very strong

$$B_{\text{NLRA}} = 2\log \frac{p(D \mid M_{\text{NL}})}{p(D \mid M_{\text{RA}})} = -B_{\text{RANL}}$$

Marginal likelihood

$p(\mathcal{D}|M_{\mathsf{NL}})$ X alp n[Mm]

Nonlinear damping

Linear resonant damping

Marginal likelihood

Nonlinear damping

Bayes factor

Nonlinear damping $B_{\rm NLRA}$ 12 -τdP η[Mm]

Linear resonant damping

Bayes factor

Nonlinear damping

Application to SDO/AIA loop oscillations

Bayes factor for 101 oscillation events in the catalog by Nechaeva et al. (2019)

Application to SDO/AIA loop oscillations

Nonlinear damping is a plausible explanation for the observed properties of damped transverse coronal loop oscillations