

NuSTAR obs of a quiet Sun minifilament eruption

Iain Hannah¹

¹University of Glasgow, UK <u>iain.hannah@glasgow.ac.uk</u>

Alphonse Sterling², Hugh Hudson^{1,5}, Kristopher Cooper¹, Brian Grefenstette³, Sarah Paterson¹, David Smith⁴, Säm Krucker^{5,6}, Lindsay Glesener⁷, Steven White⁸ ²NASA/MSFC,³Caltech, ⁴UCSC, ⁵UCB/SSL, ⁶FHNW/CH, ⁷UMN, ⁸AFRL

Introduction

- Nature of Quiet Sun (QS) energy release
 - "Flare-like" processes with heating >5 MK,
 >10MK, particle acceleration?
- A sensitive hard X-ray (HXR) telescope could detect this weak bremsstrahlung emission
 - NuSTAR direct focussing imaging spectrometer > 2keV, 12'x12' FoV
- NuSTAR observed QS during recent solar minimum (09/2018 -09/2020)
 - In sit+stare or full-disk 5x5 mosaic modes
 - Summary of all NuSTAR quiet and active
 Sun obs: <u>http://ianan.github.io/nsovr/</u>

QS 25-26 Apr 2019

- Something brief + bright occurred 26 Apr 2019 02:00 in 3rd of 4 full disk mosaics
 - NuSTAR only saw it in mosaic tile M18 and M19

QS Minifilament Eruption

• Clearer picture of eruption from SDO/AIA and STEREO-A 304Å (HG longitude -96.3°)

QS Minifilament Eruption

• NuSTAR time profile rises with XRT and AIA/Fe18 but decays faster

-250"

-240"

-260"

x [arcsec]

-130

-280'

-270"

5

NuSTAR X-ray Spectra

- M18: Poor fit to whole time range => temperature evolution. Sufficient counts do 4x 20s instead
 - Isothermal 5.36MK falling to 4.15MK
- M19: Isothermal 3.78MK fit for whole time

500

400

100 count s

100

M18

NuSTAR 2.5 - 4 keV NuSTAR 4 - 6 keV (x5)

M19

Source of HXR emission?

- NuSTAR X-rays from mini-flare arcade low in the corona beneath the erupting minifilament
 - "Internal reconnection": flux rope connected to the photosphere, collapse, or implode in upon themselves (Hudson et al. 2000)
- So similar to standard solar-eruption model (e.g., Moore et al. 2001; Shibata & Magara 2011) just much smaller
- Jet-like setup but no (obvious) jet
 - Erupting field did not have access to sufficient open field for the "external" reconnection to occur and create a substantial spire (Sterling et al. 2015,2018)

Sterling et al. 2018

Summary

- Several NuSTAR observations over the recent solar minimum
 - Many features currently under study
 - See also Paterson poster in §1.3
- From April 2019 observations find a confined minifilament eruption
 - Similar behaviour to eruption of filaments in ARs, and minifilaments that produce coronal jets
- NuSTAR continues to observe weakly flaring ARs, coordinated with other solar missions
 - See Cooper poster in §4.4
 - See <u>http://ianan.github.io/nsovr/</u>

