Analysis of Pseudo-Lyapunov Exponents of Solar Convection Using State-of-the-Art **Observations**

O NAZIONALE

DI ASTROFISICA NATIONAL INSTITUTE

FOR ASTROPHYSICS

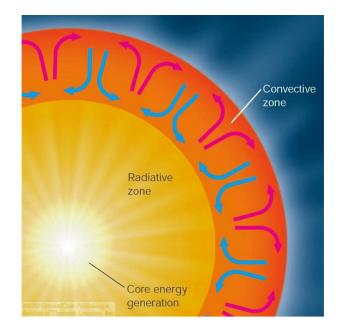
G. Viavattene¹, M. Murabito¹, S. L. Guglielmino², I. Ermolli¹, G. Consolini³, F. Giorgi¹ and S. Jafarzadeh^{4,5}

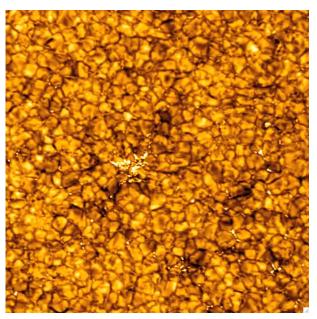
¹INAF – Osservatorio Astronomico di Roma

²INAF – Osservatorio Astrofisico di Catania

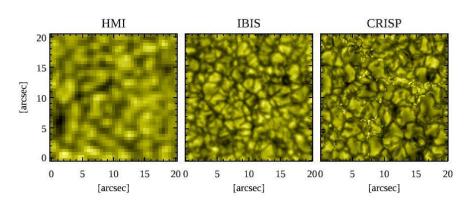
³INAF – Istituto di Astrofisica e Planetologia Spaziali

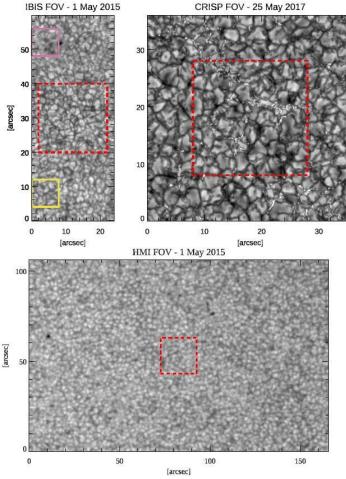
⁴Rosseland Center for Solar Physics, University of Oslo


⁵Institute of Theoretical Astrophysics, University of Oslo


More details and information in *Viavattene G. el al.* (2021), Entropy, 23, 413, doi 10.3390/e23040413

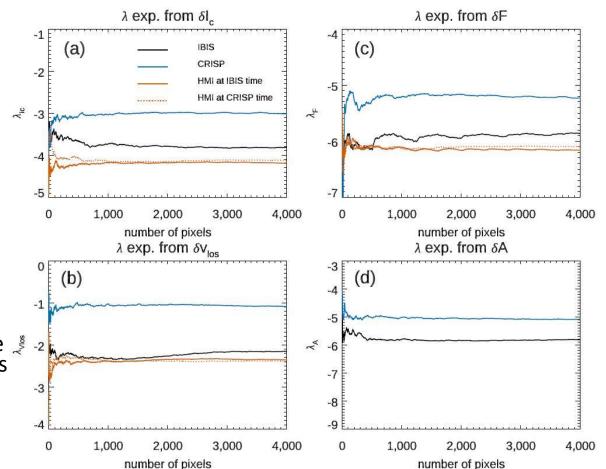
Introduction: the solar convection and the Lyapunov exponent


- The thermal convection is a nonequilibrium process ubiquitous in nature which displays a chaotic and turbulent character
- Clear manifestation of the solar convection: granulation pattern
- We characterize the solar convection using the Lyapunov exponents: ε(n)~εe^{Λn} (if Λ > 0: chaotic system, if Λ < 0: dissipative system)
- Previous works in the literature:
- numerical MHD simulations by e.g. Steffen et al. 1995
- evaluation of Lyapunov-like exponents λ in spectroscopic observations (from residuals of four spectral line parameters: δI_c , δv_c , δF , δA) by Hanslmeier et al. 1994



Datasets of our analysis: IBIS, CRISP and HMI

- Multi-dataset analysis of state-of-the-art ground- and space-based spectropolarimetric observations
- Observations with different spatial resolution, spectral sampling, post-facto processing
- Modern observation techniques (CCD detectors, Adaptive Optics systems) with respect to previous works
- Random sampling of the pixels (to avoid contamination of coherent spatial features)



Telescope	Instrument	Spectral Coverage	Time Coverage	Time Cadence	Spatial Resolution	Formation Height of Line Cores
DST	IBIS	Fe I 617.3 nm	1 May 2015 14:18–15:03 UT	48 s	0.16"	~150 km
SST	CRISP	Fe I 630.15 nm	25 May 2017 09:30-09:40 UT	-	0.13"	$\sim \! 180 \text{ km}$
SDO	HMI	Fe I 617.3 nm	1 May 2015 14:24 UT 25 May 2017 09:36 UT	-	1″	-

Results

Estimation of Pseudo-Lyapunov exponents (proxy of Λ) following Hanslmeier et al. 1994

- Negative values (dissipative regime) from all parameters in contrast to previous results in the literature
- Strong dependence on spatial resolution (less dissipative regime at small spatial scales)
- Less noisy behaviour at the smallest spatial scales and more stable convergence wrt previous results in the literature

Results

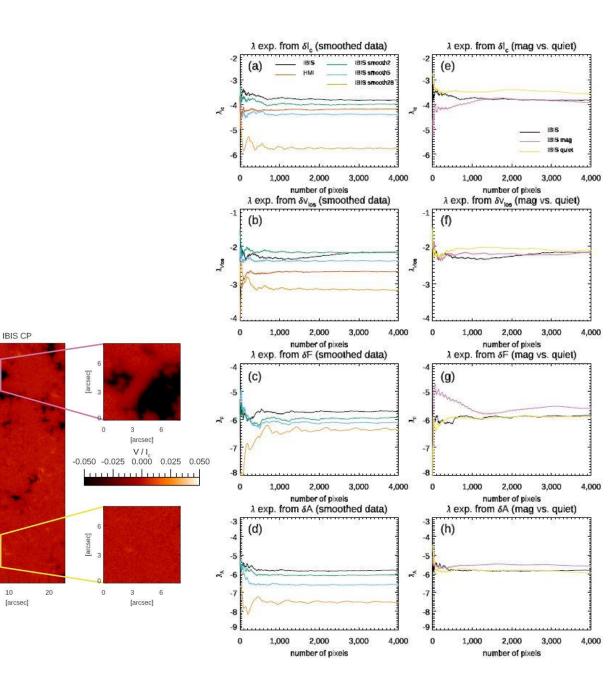
Analysis of the dependence on spatial degradation with gaussian filtering

Confirmed dependence • of λ exponents on spatial resolution

50

[arcsec]

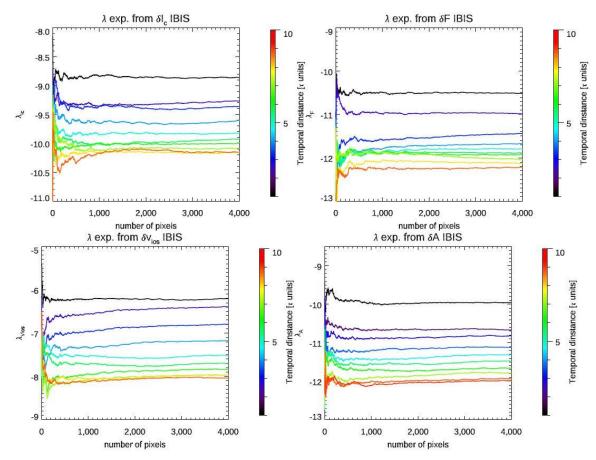
30


20

10

10

Analysis of the effects of weak magnetic fields (magnetic and quiet sub-FoVs selected using CP circular polarization maps)


 λ exponents mostly unaffected by weak magnetic fields •

Results

Further estimation based on a more accurate definition of the Λ exponents, which accounts for the time evolution of the quantities analysed at each image pixel

- Confirmation of the negative values from all considered quantities
- Clear trend towards smaller values when increasing the time elapsed between the compared observations

Conclusions

- New estimates of the pseudo-Lyapunov Exponents of the solar convection based on state-of ٠ the-art observations of the photosphere acquired with DST/IBIS, SST/CRISP and SDO/HMI
- Analysis of the effect of spatial degradation and of weak magnetic field concentrations
- Strong dependence on spatial resolution
- Small dependence on weak magnetic fields concentrations
- Further new estimates based on a more accurate definition of λ exponents wrt previous works

See Viavattene et al. 2021 Entropy, 23, 413, doi 10.3390/e23040413 for more details

This research received funding from the European Union's Horizon 2020 Research and Innovation 531 program under grant agreements No 824135 (SOLARNET) and No 729500 (PRE-EST). This work was supported by the Italian MIUR-PRIN (grant 2017 APKP7T) and by the Istituto Nazionale di AstroFisica (INAF).

Thanks for your attention