

Predicting geo-effectiveness of CMEs with EUHFORIA coupled to OpenGGCM

Anwesha Maharana¹

Camilla Scolini^{2,3}, W. Douglas Cramer², Evangelia Samara^{1,5}, Joachim Raeder² and Stefaan Poedts^{1,6}

¹ CmPA/Dept. of Mathematics, KU Leuven, Belgium
² University of New Hampshire, USA
³ University Corporation for Atmospheric Research, USA
⁴ Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, USA
⁵ Royal Observatory of Belgium, Belgium
⁶ Institute of Physics, University of Maria Curie-Skłodowska, Poland

KU LEUVEN

EUHFORIA + OpenGGCM

• We perform OpenGGCM simulations to predict geomagnetic activity caused by CME events.

- OpenGGCM simulations are driven by solar wind data at L1 from
 - in-situ observations: OMNI (*Reference for comparison*)
 - MHD Simulations: EUHFORIA (with unmagnetised Cone CME and flux rope Spheromak CME)
- We compare the geomagnetic indices predicted by OpenGGCM using different inputs with measured data.

EUropean Heliospheric FORecasting Information Asset (EUHFORIA)

Open Geospace General Circulation Model (OpenGGCM)

Test case: Event 2012-07-12

Textbook event: Hu+2016; Gopalswamy+2017; Marubashi+2017 & more

Remote observations

- Fast Earth-directed halo CME
- Single CME event
- Good STEREO position for 3D reconstruction

https://cdaw.gsfc.nasa.gov

Test case: Event 2012-07-12

Textbook event: Hu+2016; Gopalswamy+2017; Marubashi+2017 & more

OMNI (1AU IP Data) IMF and Plasma data HRO>Definitive 1minute

Remote observations

- Fast Earth-directed halo CME
- Single CME event
- Good STEREO position for 3D reconstruction

In-situ (@ L1)

- Clear CME/ICME association
- ICME: Shock+sheath+Magnetic cloud (flux-rope)

Test case: Event 2012-07-12

Textbook event: Hu+2016; Gopalswamy+2017; Marubashi+2017 & more

Remote observations

- Fast Earth-directed halo CME
- Single CME event
- Good STEREO position for 3D reconstruction

In-situ (@ L1)

- Clear CME/ICME association
- ICME: Shock+sheath+Magnetic cloud (flux-rope)

@ Earth

• Moderate geomagnetic storm (prolonged southward Bz)

Event 2012-07-12 @Earth

- Arrival time, speed and number density peaks reproduced at Earth.
- Flux rope CME modelling upgraded as compared to Scolini et al., 2019
- IMF rotations in all magnetic field components of flux rope well-captured
- Flux rope model enhances the predictions of B and B_z by around 48% and 46% as compared to Cone CME

Minimum B, in EUHFORIA Spheromak data corresponds to minimum Dst predicted by OpenGGCM

Minimum B₂ in EUHFORIA Spheromak data corresponds to minimum Dst predicted by OpenGGCM

□ Improvement (~105%) in Dst predictions using flux rope CME model over Cone model

- \Box Minimum B_z in EUHFORIA Spheromak data corresponds to minimum Dst predicted by OpenGGCM
- □ Improvement (~105%) in Dst predictions using flux rope CME model over Cone model
- AE index corresponding to negative B_z region reproduced with flux rope CME (~57% better than Cone)

□ Minimum B₂ in EUHFORIA Spheromak data corresponds to minimum Dst predicted by OpenGGCM

- □ Improvement (~105%) in Dst predictions using flux rope CME model over Cone model
- \Box AE index corresponding to negative B_z region reproduced with flux rope CME (~57% better than Cone)
- **EUHFORIA**(Spheromak)+OpenGGCM performing well as compared to the reference model

Metric: Dynamic Time Warping (DTW)

- Time gaps computed
- Additional abrupt extrema in modelled data mapped reasonably with data

Samara et al, 2021 (in preparation)

Conclusion

- Successful coupling of EUHFORIA with OpenGGCM
- Validation with observed CME event of 12 July 2012
 - Flux rope (Spheromak) CME performs as good as reference model and significantly better than Cone CME
 - AE and Dst indices predicted with comparable magnitude to measured data
- Application of advanced metric, Dynamic Time Warping (DTW) for assessing the coupling

				Δt_max(AE) [hr]	Δt_min(Dst) [hr]
EUHFORIA(Spheromak)+OpenGGCM w.r.t	∆max(AE) %	∆min(Dst) %	EUHFORIA(Spheromak) +OpenGGCM w.r.t		
OMNI+OpenGGCM (reference)	26	7		6	3
			observed data	0	-3

Limitations & Future work

- Underestimation of B_z with EUHFORIA hinders prediction of geomagnetic indices with OpenGGCM Need improvement in observations-based modelling of CMEs
- Solar wind before CME arrival in simulations has smooth temporal fluctuations does not replicate AE variations accurately
- OpenGGCM simulations are not fully stable, abrupt oscillations in Dst observed. To be studied further.
- EUHFORIA+OpenGGCM coupling has to be validated further with more events and a detailed assessment of its performance to be performed using DTW (*Maharana et al, in preparation*)

Conclusion

- Successful coupling of EUHFORIA with OpenGGCM
- Validation with observed CME event of 12 July 2012
 - Flux rope (Spheromak) CME performs as good as reference model and significantly better than Cone CME
 - AE and Dst indices predicted with comparable magnitude to measured data
- Application of advanced metric, Dynamic Time Warping (DTW) for assessing the coupling

Thank you

Questions?

anwesha.maharana@kuleuven.be

Limitations & Future work

- Underestimation of B_z with EUHFORIA hinders prediction of geomagnetic indices with OpenGGCM Need improvement in observations-based modelling of CMEs
- Solar wind before CME arrival in simulations has smooth temporal fluctuations does not replicate AE variations accurately
- OpenGGCM simulations are not fully stable, abrupt oscillations in Dst observed. To be studied further.
- EUHFORIA+OpenGGCM coupling has to be validated further with more events and a detailed assessment of its performance to be performed using DTW (*Maharana et al, in preparation*)