

How solar accelerated electron beams vary as a function of distance from the Sun

Camille Y. Lorfing

Mullard Space Science Laboratory, UCL

Supervised by Dr Hamish Reid, Dr Daniel Verscharen, and Prof. Christopher Owen

What happens around the Sun?

Previous work and why we care

- Type IIIs observations show electrons generating LW get smaller in energy as function of distance from the Sun (Krupar et al 2015)
- If the electron energy stayed constant as the beam propagated away from the Sun we would see a straight line fit to the data

- LW seem to arrive simultaneously to the 5kev electrons (c/v = 6).
- This indicates these are the electrons interacting with the LW at 0.6AU
- Black line is the estimate of electron onset times (Gomez Herrero et al 2021)
- Estimate valid at high velocities but breaks at low energies (diffusion)

Electron beam-plasma interactions: a Quasilinear approach

What is the maximum velocity responsible for Langmuir wave growth as a function of distance from the Sun?

- Injection of a power law in velocity space of electrons at the Sun
- These equations represent the propagation of the beam in space as it interacts with the background plasma

Electron beam-plasma interactions: a Quasilinear approach

Phase space (velocity-distance) contour plot of the electron distribution function and the spectral energy density of LW

Replicating the Gomez-Herrero et al 2021 plot at 1.92 solar radii

UCL

Electrons follow a straight line fil

Get onset times from arrival times

- The simulation shows that LW are being grown at c/v = 2.6
- Closer to the Sun we see that LW resonate with higher energy electrons, why?
- Close to the Sun the beam follows magnetic flux tubes: little expansion, high electron density, higher velocity electrons interact with the plasma

Replicating the Gomez-Herrero et al 2021 plot at 13.92 solar radii

UCL

Electrons follow a straight line fit

Get onset times from arrival times

- We want to use the higher energy electrons for onset times but this is not valid anymore for lower energy electrons.
- We observe that the maximum velocity responsible for LW growth decreases as a function of distance from the Sun.
- We observe diffusion in velocity space from c/v = 3 then there is an error on arrival times

Constant velocity onset (blue) vs actual (dotted) electron arrival times at 1.92 and 13.92 solar radii

UCL

300

- Electrons arrive earlier than expected: why?
 - Deceleration during the propagation
 - > Diffusion in electron velocity space
 - Discrepancy in arrival times only at low velocities/energies
- Can we assume the electron path to be scatter free?
- Net energy loss reduction in V_{ph} of LW

Conclusions and future work

- The higher energy electrons interact with the Langmuir waves closer to the Sun
- This is due to the higher energy density of electrons close to the Sun
- Next I will investigate the role of the spectral index of the velocity distribution, the beam density, and the plasma density and how it affects which energy electrons interact with the LW
- My next project will compare the results of these simulations to PSP and SolO data