Space Weather Group. University of Alcalá

Analysis of the solar wind distribution functions at 1 AU

C. Larrodera, C. Cid carlos.larrodera@edu.uah.es

September 6, 2021

Content

Introduction

Data

Bi-Gaussian approach

Solar cycle evolution

ICMEs Identification

Conclusions

Introduction

- The solar wind is classified in slow and fast wind (bulk solar wind) and transient events
- ▶ Different distribution functions have been proposed to characterize the solar wind distribution, e.g. Burlaga and King (1979); Li et al. (2016)
- Solar wind magnitudes, like proton speed, evolve dynamically between Sun and Earth. Nevertheless, no major changes are expected in the composition
- Solar wind composition is used as a signature of interplanetary coronal mass ejection (Heidrich-Meisner et al., 2016)
- Average iron charge state ($\langle Q_{Fe} \rangle$) values above 12 show the presence of ICMEs (Lepri et al., 2001; Lepri, 2004)

Data

- We use data from the Advanced Composition Explorer (ACE) at the L1 point
- ► The data range is from 1998 to 2017
- ► The sources of the data are the instruments
 - Magnetic Field Experiment (MAG)
 - Solar Wind Ion Composition Spectrometer (SWICS)
 - Solar Wind Electron, Proton and Alpha Monitor (SWEPAM)

Bi-Gaussian approach

 We propose a bi-Gaussian distribution function to characterize the solar wind distribution

$$bG(x) = h_1 \cdot \exp\left(\frac{-(x-p_1)^2}{2w_1^2}\right) + h_2 \cdot \exp\left(\frac{-(x-p_2)^2}{2w_2^2}\right)$$

h is the height of the peak, p the position of the center and w the Gaussian RMS

Bi-Gaussian approach

Dynamic magnitudes

- We have applied the bi-Gaussian distribution function to the whole data set of:
 - Proton speed
 - Proton temperature
 - Proton density
 - Magnetic field magnitude

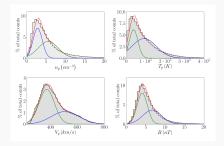


Figure 1: Solar wind distribution for different magnitudes, n_p , T_p , V_p and B for the whole ACE data set (Larrodera and Cid, 2020a)

• We have also applied it to the whole data set of the average iron charge state $\langle Q_{Fe} \rangle$

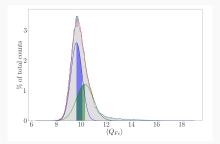


Figure 2: Solar wind distribution for $\langle Q_{Fe} \rangle$ for the whole ACE data set (Larrodera and Cid, 2020b)

Solar cycle evolution

- We have applied the bi-Gaussian approach also to the yearly data set
- We are able to study how the position of the peaks of the Gaussian PDF evolves
- ➤ We compare the position of the peaks with the Sunspot Number in order to study the correlation with the Solar Cycle

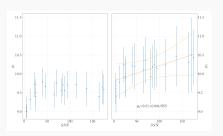


Figure 3: Scatter plots for $\langle Q_{Fe} \rangle$ against the Sunspot Number. (Larrodera and Cid, 2020b)

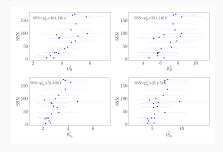


Figure 4: Scatter plot of n_p , T_p , v_p and B against the sunspot number. (Larrodera and Cid. 2020a)

ICMEs Identification

▶ Large deviation from typical values of $\langle Q_{Fe} \rangle$ are related with ICMEs

- ▶ Considering $\langle Q_{Fe} \rangle$ > 12 at least for 10 hours we found 27 events:
 - 'Extended': Events where an extension of catalogued ICMEs will covered them
 - 'New': Events not previously catalogued

Conclusions

- The bi-Gaussian function properly reproduces the bulk solar wind
- The five magnitudes analyzed show a bimodal distribution
- These results suggest that the bulk solar wind at 1 AU is bi-modal
- Some fitting parameters show a strong correlation with the solar cycle
- $ightharpoonup \langle Q_{Fe} \rangle$ allow us to locate ICMEs previously not cataloged
- $ightharpoonup \langle Q_{Fe}
 angle >$ 12 is a sufficient signature to identify ICMEs and its boundaries

Complete information

- A complete description of our research can be found in the publisehd papers:
 - https://www.aanda.org/articles/aa/abs/2020/03/aa37307-19/aa37307-19.html
 - https://link.springer.com/article/10.1007/s11207-020-01727-8
- For further questions, please contact me at: carlos.larrodera@edu.uah.es

References

- L. F. Burlaga and J. H. King. Intense interplanetary magnetic fields observed by geocentric spacecraft during 1963-1975. *Journal of Geophysical Research*, 84(A11):6633-6640, Nov 1979. doi: 10.1029/JA084iA11p06633.
- Verena Heidrich-Meisner, Thies Peleikis, Martin Kruse, Lars Berger, and Robert Wimmer-Schweingruber. Observations of high and low Fe charge states in individual solar wind streams with coronal-hole origin. Astronomy & Astrophysics, 593:A70, September 2016. doi: 10.1051/0004-6361/201527998.
- C. Larrodera and C. Cid. Bimodal distribution of the solar wind at 1 au. Astronomy & Astrophysics, 635:A44, 2020a.
- C. Larrodera and C. Cid. The distribution function of the average iron charge state at 1 au: from a bimodal wind to icme identification. *In prep*, 2020b.
- S. T. Lepri. Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum. *Journal of Geophysical Research*, 109(A1), 2004. doi: 10.1029/2003ja009954.
- S. T. Lepri, T. H. Zurbuchen, L. A. Fisk, I. G. Richardson, H. V. Cane, and

Analysis of the solar wind distribution functions at 1 A U

C. Larrodera¹, C. Cid¹

¹Space Weather Research Group. Departamento de Física y Matemáticas. Universidad de Alcalá.

Introduction

- The solar wind is classified in slow and fast wind (bulk solar wind) and transient events
- Different distribution functions have been proposed to characterize the solar wind distribution, e.g. Burlaga and King (1979); Li et al. (2016)
- Solar wind magnitudes, like proton speed, evolve dynamically between Sun and Earth. Nevertheless, no major changes are expected in the composition
- Solar wind composition is used as a signature of interplanetary coronal mass ejection (Heidrich-Meisner et al., 2016)
- Average iron charge state $(\langle Q_{Fe} \rangle)$ values above 12 show the presence of ICMEs (Lepri et al., 2001; Lepri, 2004)

Data set

- We use data from the Advanced Composition Explorer (ACE) at the L1 point
- The data range is from 1998 to 2017
- The sources of the data are the instruments
 - Magnetic Field Experiment (MAG)
 - Solar Wind Ion Composition Spectrometer (SWICS)
 - Solar Wind Electron, Proton and Alpha Monitor (SWEPAM)

Bi-Gaussian approach

• We propose a bi-Gaussian distribution function to characterize the solar wind distribution

$$bG(x) = h_1 \cdot \exp\left(\frac{-(x - p_1)^2}{2w_1^2}\right) + h_2 \cdot \exp\left(\frac{-(x - p_2)^2}{2w_2^2}\right)$$

• h is the height of the peak, p the position of the center and w the Gaussian RMS

Bi-Gaussian approach. Dynamic magnitudes

- We have applied the bi-Gaussian distribution function to the whole data set of:
 - Proton speed
 - Proton temperature
 - Proton density
 - Magnetic field magnitude

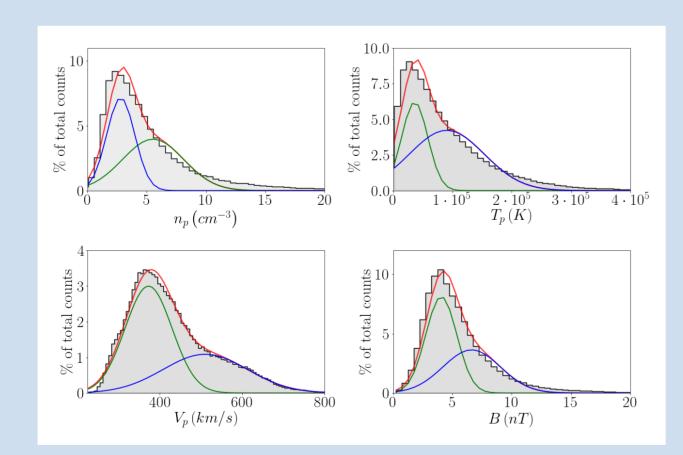


Figure 1: Solar wind distribution for different magnitudes, $n_p,\,T_p,\,V_p$ and B for the whole ACE data set (Larrodera and Cid, 2020a)

Bi-Gaussian approach. Composition

• We have also applied it to the whole data set of the average iron charge state $\langle Q_{Fe} \rangle$

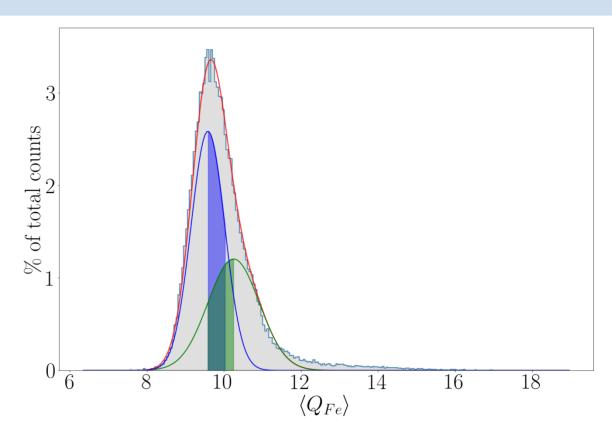


Figure 2: Solar wind distribution for $\langle Q_{Fe} \rangle$ for the whole ACE data set (Larrodera and Cid. 2020b)

Solar Cycle evolution

- We have applied the bi-Gaussian approach also to the yearly data set
- We are able to study how the position of the peaks of the Gaussian PDF evolves
- We compare the position of the peaks with the Sunspot Number in order to study the correlation with the Solar Cycle

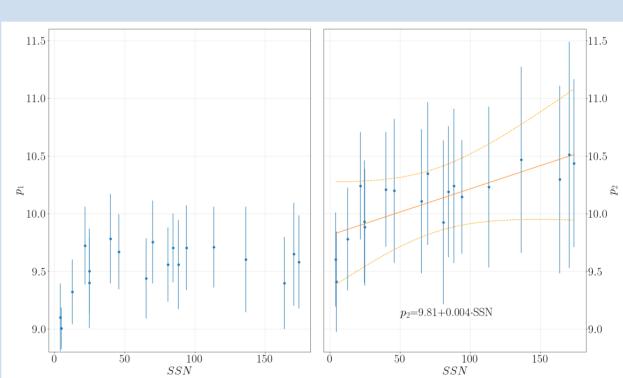


Figure 3: Scatter plots for $\langle Q_{Fe} \rangle$ against the sunspot number. (Larrodera and Cid, 2020b)

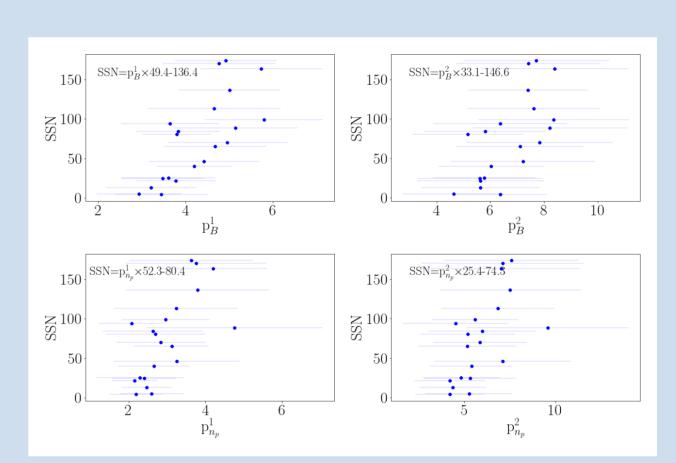


Figure 4: Scatter plot of n_p , T_p , v_p and B against the sunspot number. (Larrodera and Cid, 2020a)

ICMEs identification

- Large deviation from typical values of $\langle Q_{Fe} \rangle$ are related with ICMEs
- Considering $\langle Q_{Fe} \rangle > 12$ at least for 10 hours we found 27 events:
 - 'Extended': Events where an extension of catalogued
 ICMEs will covered them
 - 'New': Events not previously catalogued

Conclusions

- The bi-Gaussian function properly reproduces the bulk solar wind
- The five magnitudes analyzed show a bimodal distribution
- These results suggest that the bulk solar wind at 1 AU is bi-modal
- Some fitting parameters show a strong correlation with the solar cycle
- $\langle Q_{Fe} \rangle$ allow us to locate ICMEs previously not cataloged
- $\langle Q_{Fe} \rangle > 12$ is a sufficient signature to identify ICMEs and its boundaries

Complete information

- A complete description of our research can be found in the published papers:
 - $-\ https://www.aanda.org/articles/aa/abs/2020/03/aa37307-19/aa37307-19. html$
 - $-\ https://link.springer.com/article/10.1007/s11207-020-01727-8$
- For further questions, please contact me at: carlos.larrodera@edu.uah.es